
MATH 240 Fall 2024

notes by

Marcel Goh

A note on these notes. After each class, this document will be updated
with the new material that was just covered. The datestamps in the left
margin indicate when the notes from each day start. Subsections labelled
with a ∗ are optional. This document is heavily based on notes by Jeremy
Macdonald, but any errors are likely my own. Please email me if you find
any.

I. Foundations . 2

1. Set theory . 3

2. Propositional logic . 10

3. Predicate logic . 17

4. Proofs . 21

5. Functions . 28

6. Cardinality . 33

7. Relations . 37

II. Number theory . 41

8. Division . 42

9. Primes . 47

10. Modular arithmetic . 51

11. Applications of number theory. 60

III. Graph theory . 68

12. Definitions and basic notions . 69

I. FOUNDATIONS

Die Mathematik ist in ihrer Entwickelung völlig frei

und nur an die selbstredende Rücksicht gebunden,

dass ihre Begriffe sowohl in sich widerspruchslos sind,

als auch in festen durch Definitionen geordeneten Beziehungen

zu den vorher gebildeten,

bereits vorhandenen und bewährten Begriffen stehen.

— GEORG CANTOR, Grundlagen einer allgemeinen Mannigfaltigkeitslehre (1883)

1. Set theory

.viii A set is a collection of distinct objects, called its elements or its members. If x
is a member of set A, then we write x ∈ A, and if x is not an element of A, then
we write x /∈ A. Sets can be written by listing out its elements. For example,

{
1, 4, 7, 10,

√
782

}

and
{
{1, 2}, π, {4}

}

are both sets (the second example shows that sets can themselves contain other
sets). The order of the elements is not important, and duplicate elements are
ignored (so {1, 2} = {2, 1} = {1, 1, 2}). The notation using { and } is useful
for defining small, concrete examples, but expressing large sets can become very
cumbersome. The first way one can describe larger sets is to use the . . . symbol
and the power of suggestion. For instance, anyone faced with the notation

A = {1, 3, 5, 7, 9, . . .}

can quickly guess that this set is supposed to contain all the positive odd integers.
We can also use . . . to define finite sets. Most Canadians will be able to tell you
that the set

{Alberta,British Columbia, . . . ,Yukon}
of provinces and territories contains 13 elements. But this notation inherently
produces some ambiguity. For example, since the sequence of positive palin-
dromic binary numbers starts 1, 3, 5, 7, 9, 15, 17, 21, 27, . . ., we are left with some
doubt as to whether the set A above should be the set of odd numbers or the
set of palindromic binary numbers.

But there is another, less ambiguous way to define large sets. It is called
set-builder notation and it refers to any construction of the form

{
x ∈ U : P (x)

}
,

where x is a variable, U is a set, and P is a statement about x. The resulting
set contains all x such that P (x) holds. For example, letting N denote the set
{0, 1, 2, 3, . . .} of counting numbers (more on this later), to define the set of all
odd numbers, we can write

A = {x ∈ N : there exists k ∈ N such that x = 2k + 1}.

Note that the statement P (x) must contain x, but it may also contain other
previously defined symbols, as well as new symbols defined within the statement
(such as k in the example above).

Special sets of numbers. There are certain infinite sets of numbers that are
used so often as to be given special bold notation. Back in elementary school,

4 marcel goh

you learned to use the counting numbers 0, 1, 2, 3, We already saw this set in
the previous paragraph; in the business, this set is known as the natural numbers,
because if you go on a nature hike you can use them to count the number of
bluebells, donkeys, etc. that you see. (Many mathematicians use the symbol N
to denote this set without zero. When in doubt, clarify with the person you’re
talking to; in this class, 0 ∈ N.)

Sometime towards the start of junior high you were introduced to the concept
of natural numbers. The set

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

is called the set of integers or whole numbers. (The word integer just means
“whole” in Latin; cf. French entier. We use the letter Z because of the German
word Zahl meaning “number.”)

Even before you learned about negative numbers, you probably learned
about fractions. They can be defined in set-builder notation as a collection
of ratios of integers, where the denominator is not zero:

Q = {p/q : p, q ∈ Z, q 6= 0}.

(The nitpicky reader will notice that p/q is not stipulated to be a member of
any set here. This is because a rigorous definition of Q involves quotienting out
by an equivalence relation, which we don’t know how to do yet.) This is the set
of rational numbers. Remember that sets only contain distinct elements, so 2/3,
4/6, 6/9, etc. are all considered the same rational number.

Lastly, we have the set R of real numbers. Constructing this set using only
notions from set theory and logic is quite the byzantine task and well outside the
scope of this course, but you can think of R as the set of decimal numbers with
a finite number of digits to the left of the decimal point, and a possibly infinite
number of digits to the right of the decimal point.

A set of numbers near and dear to many mathematicians’ hearts is the set
of prime numbers P , defined by

P =
{
p ∈ N : p ≥ 2, and if p = ab then {a, b} = {1, p}

}
.

(You may have met a different definition of prime numbers in the past. Pause a
moment and convince yourself that the statement above defines the set of prime
numbers as you know it.)

Set inclusion. When we use set builder notation B =
{
x ∈ A : P (x)

}
, every

element of B is necessarily a member of the set A as well, since B is defined to
be the set of all x in A satisfying P (x). This is one way in which we can obtain
a subset of another set. More generally, we write B ⊆ A if every element of B
is also an element of A, and B ⊇ A if every element of A is an element of B.
Sometimes, if B ⊇ A, we say that B contains A, or B includes A. For example,
we have the chain

N ⊆ Z ⊆ Q ⊆ R

math fall 5

for the special sets of numbers defined earlier.
Symbols like ⊆, ⊇, and = (that are used to produce statements) can be

negated with a slash; for example, if there is some element of B that is not an
element of A, then we write B 6⊆ A.

The concept of set inclusion is important, because the most common way to
prove that two sets A and B are equal is to show that A is a subset of B, then
show that B is a subset of A. We illustrate this with the following example.

Proposition 1. The sets

A = {x ∈ Z : there exists k ∈ Z such that x = 2k + 1}

and
B = {x ∈ Z : there exists l ∈ Z such that x = 2l + 5}

are equal. (Both are different ways of expressing the set of all odd integers.)

Proof. Let x ∈ A. Then there exists k ∈ Z such that x = 2k + 1. Letting
l = k − 2, we find that l is an integer (since k was). Furthermore,

x = 2k + 1 = 2k − 4 + 5 = 2(k − 2) + 5 = 2l + 5.

We have found l such that x = 2l + 5, so x ∈ B. This shows that A ⊆ B.
On the other hand, let x ∈ B, so that there exists l ∈ Z such that x = 2l+5.

Now we let k = l + 2; k ∈ Z since l ∈ Z. We have

x = 2l + 5 = 2l + 4 + 1 = 2(l + 2) + 1 = 2k + 1.

This shows that x ∈ A, and we have proved that B ⊆ A. This combined with
the previous paragraph shows that A = B.

The above result is not so important, but pay attention to the structure of
this proof. It is called a “proof by double inclusion,” since we have shown that
A includes B and B includes A.

Set operations. Now we describe a number of operations that may be per-
formed on sets to produce other sets. They can all be built up from the following
two operations.

• The union A ∪ B of two sets A and B is the set of all elements that are
either in A or in B (or both).

• The intersection A∩B of A and B is the set of all elements that are in both
A and B.

As an example, if A = {1, 2, 4} and B = {1, 3, 5}, then A∪B = {1, 2, 3, 4, 5}
and A ∩B = {1}.

To avoid logical difficulties, we always assume that the sets we’re working
with are a subset of some larger ambient set U , often called the universe. Once
we know what U is, we may define the complement of a set A to be the set A of

6 marcel goh

all the elements in U except those that are in A. So if U = {1, 2, 3, 4, 5} in the
example above, then A = {3, 5} and B = {2, 4}. What about A ∪B? Well since
A∪B is all of U , its complement must be empty, and we can denote it {}. This
is one valid notation for the empty set. The other is ∅.

Now is a good time to define the cardinality |A| of a set A. This is the
number of elements in it, so |A| = |B| = 3 in our example, and |A∪B| = 5, etc.
We have |∅| = 0, and it is possible for the cardinality of a set to be infinity; for
example, |N| = ∞. We also have |R| = ∞, but this infinity is, in some sense,
larger than |N|. (More on that later.)

Next, we define the difference B \A (sometimes B −A) of two sets. This is
the set of all elements in B that are not in A. So, using the complement notation
we just learned about, we can express B \ A = B ∩ A. It is not necessary that
A be a subset of B. In the small example above, we have A \ B = {2, 4} and
B \A = {3, 5}.

Lastly, we define the symmetric difference A △ B of two sets A and B to
be the set of all elements that are either in A or in B but not both. Invoking the
above example one last time, we have A △ B = {2, 3, 4, 5}. We can express it as
using unions, intersections, and complements as

A △ B = (A ∪B) ∩A ∩B. ()

To practise using all the different operations we just learned, convince yourself
that the following are three more valid ways to express the symmetric difference:

A △ B = (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A) = A ∪B ∪ (A ∩B)

More set identities abound. We state the following proposition without proof;
you should try going though this list and convincing yourself that each identity
holds, for all sets A, B, and C. (This is a great way of practising proofs by
double inclusion.)

Proposition 2. Let A, B, and C be subsets of a universe U . Then

i) A ∩ U = A and A ∪ ∅ = A;

ii) A ∪ U = U and A ∩ ∅ = ∅;
iii) A ∪A = A and A ∩A = A;

iv) A = A;

v) A ∪B = B ∪A and A ∩B = B ∩A;

vi) A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C);

vii) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C);

viii) A ∪ (A ∩B) = A and A ∩ (A ∪B) = A; and

ix) A ∪A = U and A ∩A = ∅.

These laws have names, some of which we will use more often than others:
(i) is called the identity law, (ii) the domination law, (iii) the idempotent law,

math fall 7

(iv) the law of double negation, (v) the commutative law, (vi) the associative
law, (vii) the distributive law, (viii) the absorption law, and (ix) the complement
law.

*Analogy with addition and multiplication. Some of these laws bear some
resemblance to laws about numbers that you already know. As an exercise,
replace ∪ with + (addition), ∩ with · (multiplication), A with −A (negation), U
with 1, and ∅ with 0 in all the formulas above, and now assume that A, B, and
C are arbitrary real numbers. Which identities still hold in the number setting,
and which ones don’t? As a more advanced exercise, try replacing ∪ with △
in the identities above (some statements will have to be tweaked a bit so that
they’re actually true, some won’t). Now do the same replacement as before,
except replace △ with +. You will find that many more identities carry over.

.ix De Morgan’s laws. There are two important laws relating complements with
union and intersection. We shall state them as a proposition, this time giving a
proof (of one of them).

Proposition 3 (De Morgan’s laws). Let A and B be sets. Then

i) A ∪B = A ∩B; and

ii) A ∩B = A ∪B.

Proof. Let x ∈ A ∪B. This means that x does not belong to the union of A and
B, x cannot be in A, nor can it be in B. Since x /∈ A, x ∈ A, and since x /∈ B,
x ∈ B. Therefore, x ∈ A ∩B. This shows that A ∪B ⊆ A ∩B.

Now assume that x ∈ A∩B. So x ∈ A and x ∈ B, meaning that x /∈ A and
x /∈ B. Since x is in neither A nor B, it is also not a member of the union A∪B.
We conclude that x ∈ A ∪B. We have shown that A ∩ B ⊆ A ∪B, which fact,
combined with the previous paragraph, completes the proof of (i).

The proof of (ii) is similar and left to the reader as an exercise.

Armed with all of these laws, we are able to perform lots of mechanical set
manipulations to simplify expressions. For example, consider the expression

(
(A \B) ∪A

)
∩A ∩B.

Since A \B = A∩B and invoking the second De Morgan law on the right of the
intersection yields

(
(A ∩B) ∪A

)
∩ (A ∪B).

Now, we can use absorption on the left-hand side to obtain

A ∩ (A ∪B),

and then distributing gives us

(A ∩A) ∪ (A ∩B) = ∅ ∪ (A ∩B) = A ∩B.

8 marcel goh

We thus see that the nasty expression
(
(A \ B) ∪ A

)
∩ A ∩B is simply another

way of writing A ∩B.

The Cartesian product and power set. From the real line R, we can ge-
ometrically construct the Cartesian plane R2 by lining up parallel copies of R,
one for each element of the original line and all parallel to the original line. No-
tationally, R2 is the set of all ordered pairs (a, b), where a, b ∈ R. Generalising
this, for any sets A and B we can define the Cartesian product A×B to be the
set

A×B =
{
(a, b) : a ∈ A, b ∈ B

}
.

We sometimes write A2 for A×A, and more generally An for the n-fold Cartesian
product of A with itself. (This explains the notation R2 for the Cartesian plane,
and Rn for the n-dimensional vector space over R.) Note that A × B is not
equal to B ×A in general.

Proposition 4. If A and B are finite sets, then |A×B| = |A| · |B|.
Proof. The set A×B consists of all ordered pairs (a, b) where a ∈ A and b ∈ B.
There are |A| choices for a, and for a, there are |B| ways to pair it with a b from
B. So there are |A| · |B| pairs in total.

Now we define the power set. For a set A, this is the set of all subsets of
A, and is commonly denoted by P(A) or 2A. (We will use the latter notation in
these notes.) In set-builder notation, we have

2A = {X ⊆ U : X ⊆ A}.

As an example, if A = {1, 2, 3}, then

2A =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

Note that even though, say, 1 ∈ A, we do not have 1 ∈ 2A. We do, however,
have {1} ∈ 2A.

Another example is 2Z, the set of all subsets of integers. If P is the set of
primes, then P ∈ 2Z. Also in 2Z is the set S = {n2 : n ∈ Z} of square numbers.

There is a way of encoding subsets with strings of 0s and 1s. Suppose we
have a set

{−3, 1, 7, 19, 23}.
Fixing this order of the elements, for any arbitrary subset of this set, we can
associate to it a binary string. Consider the subset {1, 19, 23}. This corresponds
to the binary string 01011: since the first element, 3, is not in the subset, we
write a 0. Then 1 is in the subset, so we write a 1, and so on. This is a reversible
process. Given a binary string of length 5, say, 00101, we can reconstruct the
subset that corresponds to it. The first two 0s mean that −3 and 1 do not belong
to the set, but 7 does, 19 doesn’t, and 23 does. So the subset is {7, 23}. In this
way we see that there is a one-to-one correspondence between the elements of 2A

and binary strings of length |A|. We’ll use this fact in the proof of the following
proposition.

math fall 9

Proposition 5. If A is finite, then |2A| = 2|A|.

Proof. We just saw that there is a one-to-one correspondence between elements
of 2A and binary strings of length |A|. So it suffices to count the number of
binary strings of length |A|. Well, each digit can be either 0 or 1, and there are
|A| digits, so the number of strings is

2 · 2 · · · · · 2
︸ ︷︷ ︸

|A| times

= 2|A|.

Counterexamples in proofs. We finish this subsection with a little example
problem. Is it true that 2A ∪ 2B = 2A∪B for all sets A and B?

Let’s start by trying to prove the statement is true. As usual, we will attempt
a double-inclusion proof. Let 2A ∪ 2B . This means X is either a subset of A or
it is a subset of B. Either way, X is a subset of A ∪B, so X ∈ 2A∪B . So far so
good; we have proved that 2A ∪ 2B ⊆ 2A∪B .

Now we try the other direction. Let X ∈ 2A∪B . So X is a subset of A ∪B.
From here we want to say that X must be a subset of A or it must be a subset
of B, but is that necessarily true? It is possible that X is contained slightly in
A and slightly in B. So we have failed to prove that 2A∪B ⊆ 2A ∪ 2B in general.
But just because we have failed to prove that something is true doesn’t mean we
have proved it is false!

To actually prove that 2A∪B ⊆ 2A ∪ 2B doesn’t hold in general, we need to
find a counterexample. That is, we need to construct sets A and B such that
the statement is false. In this case, we can let A = {1, 2}, B = {3, 4}, so that
A∪B = {1, 2, 3, 4}. Then the set {1, 3} is a subset of A∪B but is not a subset of
A and it is not a subset of B. In other words, {1, 3} ∈ 2A∪B but {1, 3} /∈ 2A∪2B ,
proving that 2A∪B 6⊆ 2A ∪ 2B .

.ix Russell’s paradox. Earlier, we said that the sets we are working with need to
be a subset of a universe U , which has already been proved to be a set. We gave
lots of ways to make sets out of new sets, such as the union and intersection
operations, etc. Starting with the assumption that the empty set ∅ is a set, it
is possible to define the set of natural numbers as follows. We can define 0 = ∅,
1 = {0}, and 2 = {0, 1}, and so on. Now we take the set of all of these, and call
this N. (We can also define addition and multiplication on these set-theoretic
“numbers” so that they behave like addition and multiplication do on N.) From
here we can do more funky stuff to define Z, Q, and R, and prove that these
are all sets (you can see this in a higher-level course on set theory, if you’re
interested). So there isn’t much of a problem with all the sets we have played
with so far; they are all subsets of things that are already known to be sets.

Ungodly things can happen if we don’t stick by these rules. An example,
due to Bertrand Russell, is the “set”

R = {sets X : X /∈ X}.

10 marcel goh

In plain English, R is defined to be the set of all sets that contain themselves.
This is not a subset of any known thing, so by our criterion above we would not
consider it a set. But supposing it is, let us ask ourselves the following question.
Does R contain itself? If it does not, then R /∈ R, so R would be a set that
satisfied the condition of R, so R ∈ R. But on the other hand, if R ∈ R, then R
violates the condition defining R, so R /∈ R. Round and round we go in a circle
of contradiction.

Such is the price of meddling with “sets” that aren’t subsets of known sets.
This also shows that there is no such thing as “the set of all sets.”

2. Propositional logic

A proposition is a statement that is true or false. For example “8 is even” is
a statement we know to be true, and “8 is prime” is a statement we know to
be false. The statement “n is prime” is not a proposition because its truth or
falsity depends on what n is. The statement “22

240−1 is prime” is a proposition,
because it is either true or false (even though you or I might not know which
one it is).

A propositional variable or a boolean variable is a variable which can take
either the value 0 or 1, where 0 means “false” and 1 means “true.” Usually we
use letters p, q, and r to denote propositional variables. The simplest logical
operator is negation, defined by the table

p ¬p

0 1
1 0 .

This is also called the NOT operator, since if p is true, then ¬p is false, and vice
versa. Next is conjunction, which has the table

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1 .

This is also called the AND operator, because p∧ q is true if and only if p and q
are both true. The OR operator, also called disjunction, has the table

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1 .

math fall 11

We see that p ∨ q is true if p or q is true (or both). The symbol ∨ is meant
to recall the Latin word vel, meaning “or.” (One of the most important early
treatises on mathematical logic and set theory was Arithmetices principia, nova
methodo exposita, published in Latin in 1889 by Giuseppe Peano. It established
the now-standard axiomatisation of the natural numbers.)

On the other hand, in English, we often use the word “or” to mean an
exclusive or; that is, either p and q are true but not both. In mathematics, on
the other hand, “or” is usually inclusive, so both p and q are allowed to hold at
the same time. It is possible to express the exclusive disjunction (often called
XOR) by a table, however. We will use the symbol ⊕ for this operator, and its
table looks like this:

p q p⊕ q

0 0 0
0 1 1
1 0 1
1 1 0

So p⊕ q is true if p is true or q is true, but not both.

A formula is an expression containing propositional variables, 0, 1, logical
operators, and parentheses. The formula must syntactically make sense; for
instance, 0(∨ ∧ q¬ is not a formula. Just as in ordinary mathematical notation,
parentheses are used to clarify which operators should be evaluated first. We
will assume that negation applies first, but an expression such as p ∨ q ∧ r is
ambiguous. (In many programming languages, conjunction has higher priority
than disjunction, but in this class, just add parentheses to clarify.)

Above we have illustrated the basic logical operators by writing out their
truth tables. These are tables that give the value of a formula for all possible
values of its variables. We can write truth tables for more complex formulas as
well:

p q p ∧ q ¬(p ∧ q) ¬(p ∧ q)⊕ q

0 0 0 1 1
0 1 0 1 0
1 0 0 1 1
1 1 1 0 1

Strictly speaking, the third and fourth columns are not necessary, but these
intermediary columns help us verify the accuracy of the following ones.

Two formulas f1 and f2 are said to be logically equivalent if they have the
same truth table; that is, they produce the same output if given the same input.
In this case we write f1 ≡ f2. For example, let f1 = ¬(p ∧ q) ⊕ q, the formula

12 marcel goh

whose truth table is illustrated above. Now let f2 = p ∨ ¬q. Its truth table is
p q ¬q p ∨ ¬q

0 0 1 1
0 1 0 0
1 0 1 1
1 1 0 1 ,

so we conclude that f1 ≡ f2. As a larger example, suppose we want to find all
values of p, q, and r such that

f = (p ∨ q) ∧ (¬q ∨ ¬r)
evaluates to 1. The truth table

p q r p ∨ q ¬q ∨ ¬r f

0 0 0 0 1 0
0 0 1 0 1 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 0 0

shows that f evaluates to 1 precisely when

(p, q, r) ∈
{
(0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)

}
.

To write out the truth table for a formula with n variables, we need 2n rows, so
this method is unsuitable for formulas with more than three or four variables.

Simplifying logical formulas. Just as we have rules for simplifying set ex-
pressions, there are ways to turn complicated logical formulas into simpler ones
that are logically equivalent. What might surprise you is that the rules turn out
to be exactly the same! To see the basis for this correspondence, consider the
definition of a union of sets A and B. In set-builder notation, this is

A ∪B = {x ∈ U : x ∈ A or x ∈ B}.
The “or” in the definition suggests that ∪ is intimately related to the ∨ operation
in propositional logic. Repeating this process, we have the “dictionary”

Set theory Propositional logic

sets A, B variables p, q

unions A ∪B disjunctions p ∨ q

intersections A ∩B conjunctions p ∧ q

complements A negations ¬p

symmetric differences A △ B exclusive disjunctions p⊕ q

the empty set ∅ 0

the universe U 1

Exploiting this connection, we have the following analogue of Proposition 2.

math fall 13

Proposition 2. Let p, q, and r be propositional variables. Then

i) p ∧ 1 ≡ p and p ∨ 0 ≡ p;

ii) p ∨ 1 ≡ 1 and p ∧ 0 ≡ 0;

iii) p ∨ p ≡ p and p ∧ p ≡ p;

iv) ¬¬p ≡ p;

v) p ∨ q ≡ q ∨ p and p ∧ q ≡ q ∧ p;

vi) p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r and p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r);

vii) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) and p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r);

viii) p ∨ (p ∧ q) ≡ p and p ∧ (p ∨ q) ≡ p; and

ix) p ∨ p ≡ 1 and p ∧ p ≡ 0.

Since they are essentially the same as their set equivalents, the names of
these laws are the same as in the realm of sets. We also have the propositional
equivalent of De Morgan’s law, which states that

x) ¬(p ∨ q) ≡ ¬p ∧ ¬q and ¬(p ∧ q) ≡ ¬p ∨ ¬q.
Using these rules, we can now show that ¬(p ∧ q) ⊕ q ≡ p ∨ ¬q, which we

already saw earlier from their truth tables. First we observe that

p⊕ q ≡ (p ∨ q) ∧ ¬(p ∧ q), ()

which is analogous to the identity () for symmetric differences. So

¬(p ∧ q)⊕ q ≡
(
¬(p ∧ q) ∨ q

)
∧ ¬

(
¬(p ∧ q) ∧ q

)

≡ (¬p ∨ ¬q ∨ q) ∧
(
(p ∧ q) ∨ ¬q

)

≡ (¬p ∨ 1) ∧
(
(p ∨ ¬q) ∧ (q ∨ ¬q)

)

≡ 1 ∧
(
(p ∨ ¬q) ∧ 1

)

≡ p ∨ ¬q,
where in the first line we use (), in the second line we use De Morgan’s law
twice, in the third line we use the complement and distributive laws, the fourth
line we use the domination and complement laws, and in the last line we use the
identity law (twice). (It is not super important to remember the names of all
these laws, as long as you remember their statements, but you may actually find
it is easier to remember the names along with the statements, just as it might
be easier to remember faces of people you’ve met if you also know their names.)

.ix Conditional and biconditional. We now examine the conditional logical re-
lation IF p THEN q. It is denoted by p⇒ q and its truth table is given by

p q p⇒ q

0 0 1
0 1 1
1 0 0
1 1 1 .

14 marcel goh

Within the conditional statement, p is called the antecedent; this is the assump-
tion. The statement that is asserted, conditional that the antecendent holds,
is called the consequent q. You can quickly check that the relation p ⇒ q is
equivalent to ¬p ∨ q. This fact is useful when performing mechanical simplifica-
tions. In English, the statement “if p then q” asserts a causal relation between
p and q. Take a moment and reconcile this idea with the truth table above. It
is normal to get a little tripped up if it’s your first time seeing this table. In
the first row, q doesn’t even happen, so it might feel weird to say that p has
“caused” q to happen in this case, and in the second row, p is not true and q is
true, so it might seem odd that we have set p⇒ q to true, because there seems
to be no relation between p and q. But it should make sense if you think of
p as a precondition to a promise q, and then considering whether the promise
is broken. As an example, suppose your friend says, If it snows tomorrow I’ll
work in Trottier with you. If it doesn’t snow and she doesn’t pull up, she hasn’t
technically broken her promise. If it doesn’t snow and she shows up, then she
still hasn’t broken her promise. The only way she can break her promise is if it
snows and she doesn’t come to Trottier; this situation corresponds to the only
0-row in the truth table.

The conditional is a very important logical operator to understand, because
most theorem statements assume some hypothesis and claim some conclusion.
You will be asked to prove statements of this form, so it is important to under-
stand the logical nature of the statements to begin with.

The last relation is called the biconditional, and it asserts that variables p
and q are logically equivalent. That is, p happens if and only if q happens. It’s
truth table

p q p⇔ q

0 0 1
0 1 0
1 0 0
1 1 1

is pretty self-explanatory; in it, p ⇔ q is true whenever p and q have the same
truth value. The name “biconditional” is suggested by (part of) the following
proposition.

Proposition 6. Let p and q be propositional variables. Then

p⇔ q ≡ (p⇒ q) ∧ (q ⇒ p)

≡
(
(¬p) ∨ q

)
∧
(
(¬q) ∨ p

)

≡ (p ∧ q) ∨
(
(¬p) ∧ (¬q)

)
.

Proof. We leave the first equivalence to the reader (writing out the truth table is
one way of proving it). The second equivalence follows from our earlier observa-
tion that p⇒ q ≡ ¬p∨q, and the third equivalence follows from the distributive,
complement, and identity laws.

math fall 15

A formula f is called a

i) tautology if f ≡ 1, i.e., f always evaluates to true;

ii) contradiction if f ≡ 0, i.e., f always evaluates to false;

iii) contingency if f can evaluate to both 1 and 0, depending on the values of
its variables;

iv) satisfiable if f evaluates to 1 for at least one input; and

v) falsifiable if f evaluates to 0 for at least one input.

An example of a tautology is p∨¬p and an example of a contradiction is p∧
¬p. This follows from the complement laws. To say that something is satisfiable
is precisely to say that it is not a contradiction, and to say that something is
falsifiable is equivalent to saying that it is not a tautology. Contingencies are
those formulas that are both satisfiable and falsifiable (in other words, formulas
that are neither tautologies nor contradictions).

Suppose we are asked which of the above definitions the formula

f ≡
(
p ∧ (p⇒ q)

)
⇒ q

satisfies. This formula only has two variables, so it is easy enough to use a truth
table for this purpose, but we will take the opportunity to practise simplifying
the expression symbolically. First of all, let’s change all conditionals of the form
r ⇒ s, to disjunctions of the form ¬r ∨ s. This gives us

f ≡ ¬
(
p ∧ (¬p ∨ q)

)
∨ q.

Now we use the distributive law to distribute the conjunction over the innermost
disjunction, obtaining

f ≡ ¬
(
(p ∧ ¬p) ∨ (p ∧ q)

)
∨ q;

by the complement and identity laws in that order, this simplifies to

f ≡ ¬(p ∧ q) ∨ q.

Now De Morgan’s law and associativity give

f ≡ (¬p ∨ ¬q) ∨ q ≡ ¬p ∨ (¬q ∨ q),

and thus
f ≡ ¬p ∨ 1 ≡ 1,

by the complement and domination laws in that order. We conclude that f is a
tautology, which also means that it is satisfiable.

The fact that
(
p ∧ (p ⇒ q)

)
⇒ q is a tautology symbolically justifies the

argument that of p is true and p⇒ q is true, then we should be able to conclude
q. This form of argument is called modus ponens, and it dates back to ancient

16 marcel goh

times. You probably use modus ponens all the time in everyday life without
knowing it, and we will certainly use it in this class a lot.

Encoding problems in propositional logic. Many algorithmic and logical
problems can be encoded in propositional logic (and then later solved by a com-
puter program). For example, suppose we want to play 4 × 4 Sudoku. In this
game, we have a 4× 4 grid and we want to fill it with the numbers 1 through 4
such that

i) every row contains 1 through 4;

ii) every column contains 1 through 4; and

iii) the four subsquares each contain 1 through 4.

In a given instance of the game, some cells are already filled in. The puzzle
is: Is there a solution and if so, what is it?

1 3

2

Fig. 1. An example 4× 4 Sudoku game.

To represent a Sudoku game in propositional logic, we can define boolean
variables pi,j,k, where i, j, and k range over {1, 2, 3, 4}. (So there are 43 variables
in total.) We shall set

pi,j,k =

{
1, if the number k is in row i and column j;
0, otherwise.

We’ll number the rows increasing from the top and the columns increasing from
left to right. For example, in Fig. 1 there is a 2 in row 1 and column 3, so
p1,3,2 = 1.

Now we set to work encoding the conditions of a Sudoku grid in propositional
logic:

i) To stipulate that every row contain 1 through 4, we first define auxiliary
variables

ri,k = pi,1,k ∨ pi,2,k ∨ pi,3,k ∨ pi,3,k,

for i, k ∈ {1, 2, 3, 4}. With these helper variables, we now see that

r1,1 ∧ r1,2 ∧ r1,3 ∧ r1,4

encodes the requirement that row 1 contains one of each number. We do
the same for rows 2, 3, and 4 as well, and then combine with AND.

math fall 17

ii) We do a similar thing as in part (i) for each of the four columns.

iii) Ditto for subsquares.

iv) We need to set the initial values of the grid. For the grid in Fig. 1, we have
the formula

p1,3,2 ∧ p3,1,1 ∧ p3,2,3.

v) Lastly, we need to make sure that there is not more than one number per
cell. To do this, for each cell (i, j) ∈ {1, 2, 3, 4}2 we write

pi,j,1 ⇒ (¬pi,j,2 ∧ ¬pi,j,3 ∧ ¬pi,j,4),

and so on (four conditionals in total). Of course we’ll need to AND all these
together.

Now we combine the formulas from each of these five steps into one long
formula f such that f is satisfiable if and only if the grid has a solution, and the
values for pi,j,k give a solution.

Defining all of these variables was a rather arduous and cumbersome process,
and not entirely worth it for a 4×4 game of Sudoku (which can just be solved by
eyeballing the grid). But one could imagine writing a general computer program
to encode larger and larger grids. In fact, there are lots of problems that can be
reduced to the problem of determining if a boolean formula is satisfiable. This
means that if we have a program capable of taking a formula f as input and
spitting out whether or not it is satisfiable (in a reasonable amount of time),
then there are lots of real-world problems that this program could be applied to.

This problem is called the boolean satisfiability problem, often abbreviated
SAT. One way of solving it for any given f is to just compute its truth table.
We already know the downside of this approach: if f has n variables, then its
truth table will have 2n rows. Given a few minutes, you are certainly capable
of writing down a formula f that has 300 variables, call them p1, . . . , p300. The
truth table of f will have 2300 rows, which is more than the number of atoms in
the observable universe. You can learn a lot more about SAT in a higher-level
class on computational complexity (e.g., COMP 360/362).

3. Predicate logic

.ix Propositional logic allows us to work with simple declarations, but this isn’t pow-
erful enough to express some deeper mathematical concepts. For this purpose,
we now introduce the notion of a predicate. This is a statement involving some
number of variables, each of which may take values coming from a universe U ,
such that the statement evaluates to either true or false once all variables are
assigned values. The statement P (n) given by “n is prime” is an example of this,
where n can take any value in the universe Z. An example with two variables
is the predicate L(x, y) defined by “x is less than y.” (A more commonly-used
notation for this predicate is “x < y.”)

18 marcel goh

Predicates contain variables, but at the moment we don’t have any way
of introducing new variables into a statement. This is done using two different
quantifiers. The first is the universal quantifier, denoted ∀ and meaning “for all.”
The statement ∀n : P (n) is true if and only if P (n) is true for every possible
value that n can take. The second quantifier is the existential quantifier, written
“∃” and with the meaning “there exists.” The statement ∃n : P (n) is true if and
only if there is (at least) one value that n can take such that P (n) is true. The
colon doesn’t really have any mathematical meaning in these formulas; they just
visually set the quantifiers apart from the predicates that follow.

For instance, taking P (n) to be the statement “n is prime,” where the
universe U is N, the statement ∃nP (n) is true and the statement ∀n : P (n) is
false. What about the statement ∀x ∃y : y < x? Well, if the universe U is taken
to be N, then the statement is false, because setting x equal to 0, there is no
element y of N such that y < 0. But if U = Z, then the statement is true, since
for every integer x, we can put y = x− 1, so that y < x.

Now we practise translating converting mathematical statements written in
English into formulas in predicate logic. Suppose we want to write, Every integer
is even or odd. The universe here is is the set Z of integers. The word “every”
has the same meaning as “for all,” so right off the bat, we can reexpress the
statement as, For all n ∈ Z, n is even or n is odd. In symbols, this is

∀n (n even ∨ n odd).

Lastly, we need to figure out how to express the property of being even or being
odd. An integer n is even if an only if it is a multiple of two; that is, if there is
some integer k such that 2k = n. Likewise, an integer is odd if and only if it is
one more than a multiple of two. The corresponding formula is ∃k : 2k + 1 = n.
So our statement can be expressed

∀n
(
(∃k : n = 2k) ∨ (∃k : n = 2k + 1)

)
.

The variable k appears twice in this formula, but its first instance is independent
of its second instance, because of the parentheses. (Readers who write computer
programs will be familiar with the concept of a variable “going out of scope.”)
So there is nothing wrong with this formula, but to be extra clear that the first
k is different from the second k, why don’t we replace it with a different letter?
Thus we arrive at

∀n
(
(∃k : n = 2k) ∨ (∃l : n = 2l + 1)

)
,

a formula in predicate logic that means, Every integer is even or odd.

Restrictions using quantifiers. It is not true that every real number has a
multiplicative inverse, since one cannot divide by zero. However, the statement
“every nonzero real number has a multiplicative inverse” is true. How should

math fall 19

we write this as a formula in predicate logic? One way is to use the conditional:
over the universe U = R, we could write

∀x : (x 6= 0⇒ ∃y : xy = 1).

Another is to use subscripts: in the same universe, we write

∀xx 6=0 ∃y : xy = 1.

Using subscripts is slightly informal, since we didn’t formally define above what
a subscript is supposed to mean, but it is something that you might encounter.
The last way is to simply restrict the universe itself: in the universe U = R\{0},
the statement

∀x ∃y : xy = 1

is true.

Multiple quantifiers. Withing a formula, quantifiers cannot be interchanged
willy-nilly. The order of ∀ and ∃ matters! They are read from left to right.
Consider the following examples, over the universe U = R. The statement

∀x ∃y : x+ y = 0

is true, since for each given x we can take y to be −x. On the other hand,

∃y ∀x : x+ y = 0

is false, since it would mean that there is some integer that adds up to zero with
any integer. Of course, sometimes switching the order of quantifiers, doesn’t
change the truth value of a statement. Both

∃y ∀x : xy = 0

and
∀x ∃y : xy = 0

are true, since in the first case, we can take y = 0, and in the second case, we
can set y to 0 no matter what x is given.

So we know that the order of ∀ and ∃ matters in general, but repeated
instances of the same quantifier can be interchanged. For instance,

∀x ∀y : x2 + y4 ≥ 0

is the same as
∀y ∀x : x2 + y4 ≥ 0,

and we can even write ∀x, y : x2 + y4 ≥ 0, to introduce both variables simulta-
neously.

20 marcel goh

Negating quantifiers. The universal quantifier is sort of like a big chain of
conjunctions that goes over the whole of the universe. For example, in the
universe N, the statement ∀n : P (n) is equivalent to

P (1) ∧ P (2) ∧ P (3) ∧ · · · ,

if this were a valid propositional formula (it isn’t because we don’t allow propo-
sitional formulas to be infinite). Likewise, the existential quantifier ∃n : P (n) is
equivalent to

P (1) ∨ P (2) ∨ P (3) ∨ · · · .
We know, by De Morgan’s laws, that negating a big series of conjunctions requires
us to flip all the ANDs to ORs. So, once again abusing notation somewhat, we
expect

¬
(
P (1) ∧ P (2) ∧ P (3) ∧ · · ·

)
≡ ¬P (1) ∨ ¬P (2) ∨ ¬P (3) ∨ · · · .

Thus we conclude that

¬
(
∀n : P (n)

)
≡ ∃n : ¬P (n).

You can play the same game with the other De Morgan’s law to show that

¬
(
∃n : P (n)

)
≡ ∀n : ¬P (n).

Going back to our example of P (n) denoting “n is prime,” the statement ¬
(
∀n :

P (n)
)
is true, since not all integers n are prime, and we have just shown that

this is equivalent to the statement ∃n : ¬P (n); that is, there exists n such that
n is not prime.

We end this section with a longer example. Let’s express the statement,
“There is a nonzero real number such that every real number is not its inverse
or is negative.” In the universe R, the formula corresponding to this statement
is

∃x : (x 6= 0 ∧ (∀y : xy 6= 1 ∨ y < 0)
)
.

(Work it out yourself!) Is this statement true or false? It turns out that it is
true. You might be able to stare at the formula long enough to convince yourself
of this fact, but another way to see that it’s true is to note that its negation is
false. Let’s do this now (it’s a good excuse to practise negating a formula). We
have

¬
(

∃x : (x 6= 0 ∧ (∀y : xy 6= 1 ∨ y < 0)
))

≡ ∀x : ¬(x 6= 0 ∧ (∀y : xy 6= 1 ∨ y < 0)
)

≡ ∀x :
(
x = 0 ∨ ¬(∀y : xy 6= 1 ∨ y < 0)

)

≡ ∀x :
(
x = 0 ∨ ∃y : ¬(xy 6= 1 ∨ y < 0)

)

≡ ∀x :
(
x = 0 ∨ ∃y : (xy = 1 ∧ y ≥ 0)

)
.

math fall 21

This negated statement is false, since if x = −2, then x = 0 doesn’t hold, so
the left-hand side of the OR isn’t true, and there is no y such that −2y = 1 and
y ≥ 0 are both true, since the only y satisfying −2y = 1 is −1/2.

Negating a formula in predicate logic is entirely mechanical. The ¬ symbol
moves from left to right like a bulldozer that flips quantifiers and negates pred-
icates it finds along the way, until eventually its job is done and it disappears.
More broadly, we write mathematical statements in formal logic to make things
more precise and mechanical. This can be useful to humans, since English is of-
ten ambiguous whereas the notation we just established is not. It can be useful
to machines as well, since, as we just saw, manipulating a formula is something
that can very easily be automated.

4. Proofs

We’re getting to the fun part of the course now. Further back in these notes, we
already proved a few statements about sets. This was just a taste of what’s to
come, as the main focus of this course is to teach you how to prove mathemat-
ical statements. These will all be statements that can ultimately be stated in
predicate logic, so using the tools from the previous section, you can boil them
down to their logical skeleton. In this section, we will formally define what it
means to prove a statement in predicate logic.

To prove a statement, we always process the quantifiers from left to right.
Whenever we encounter something of the form ∃x : P (x), we are allowed to
choose the value for x (from the given universe), and we just need to show that
P (x) holds for that value of x. Here’s an example.

Proposition 7. There exists an integer m > 0 and an integer n < 0 such that
m2 + n2 = 25.

We’ve written the statement in words, and we will continue to do so for all the
propositions in these notes because we are humans and not cyborgs, but notice
that the underlying predicate logical formula here is

∃m∃n : m > 0 ∧ n < 0 ∧m2 + n2 = 25,

with U = Z. For the remainder of this section, we’ll continue to write out the
formulaic equivalents of propositions, to practise converting between the two
worlds.

Proof. After a moment’s contemplation, we notice that 9+16 = 25. So we need
a positive integer that squares to to 9 and a negative number that squares to 16.
Hence we may pick m = 3 and n = −4, and m2 + n2 = 25.

On the other hand, to prove a statement of the form ∀x : P (x), we are not
allowed to choose the value of x. Instead, we imagine it is given to us, and we
still have to prove P (x), no matter what the x might be. Here’s what we mean.

22 marcel goh

Proposition 8. For all x ∈ Q, there exists y ∈ Z such that xy ∈ Z.

The formula this time is

∀x ∃y : y ∈ Z ∧ xy ∈ Z,

over U = Q.

Proof. Let x ∈ Q. Then x can be expressed as the ratio of two integers; write
x = m/n with m,n ∈ Z. Then, setting y = n ∈ Z, we have xy = (m/n) · n =
m ∈ Z.

Notice how we introduced the variable x in the above proof. Because we’re
trying to prove a “for all” statement, we use the word “let,” to indicate that x
is given to us by some higher power. In fact, we should sort of view this higher
power as possibly being malicious. A very useful way to think about writing
a proof is to imagine a game in which you are trying to prove a statement in
predicate logic, and a supernatural adversary is attempting to thwart you. Let’s
say this predicate has four variables, so the statement is

∃x ∀y ∀z ∃w : P (x, y, z, w).

The variables in the statement are introduced from left to right. Each time you
see a ∃ symbol, it’s your turn. In the example above, you get to set the variable x
to any element of the given universe (keeping in mind that your eventual goal is
to prove P (x, y, z, w)). Each time there is a ∀ symbol, it’s the adversary’s turn,
and you should be prepared for whatever he throws at you. So in our example,
the adversary may set y and z to anything in the universe, and he knows you
picked x. Lastly, you get to pick w. If P (x, y, z, w) is true, you win, and if
not, the adversary wins. Writing a proof is equivalent to describing a winning
strategy for the player against the adversary.

.ix Proving conditional statements. Many mathematical statements introduce
some hypotheses, then assert some conclusion. Thus they are some kind of
statement of the form p ⇒ q. To prove this kind of statement, we assume that
p holds, then prove that q is true. This is because the only way a statement
for p ⇒ q to be false is if p is true and q is false, so we’re showing this cannot
happen. Take a look at the following example.

Proposition 9. If n is an odd integer, then n2 is also odd.

The underlying formula is ∀n
(
(∃k : n = 2k + 1) ⇒ (∃l : n2 = 2l + 1)

)
, in the

universe U = Z.

Proof. Let n be an arbitrary odd integer, so that there exists k such that
n = 2k + 1. Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

math fall 23

so setting l = 2k2 + 2k, which is an integer, we have n2 = 2l + 1. Hence n2 is
odd.

To disprove a statement, we simply prove that its negation is true. For
example, suppose we want to disprove the statement ∃x ∀y : x+ y = 0 (this was
a statement we encountered in the previous section). Its negation is

∀x ∃y : x+ y 6= 0,

and to prove it we let x be given, set y = −x + 1, and observe that x + y =
x+ (−x+ 1) = 1, which is not equal to 0.

Now we define two words that sound similar but are very different, logically
speaking. The converse of a conditional statement p⇒ q is the statement q ⇒ p.
The statement p⇒ q and its converse both hold if and only if the biconditional
statement p ⇔ q holds. On the other hand, the contrapositive to p ⇒ q is the
statement ¬q ⇒ ¬p. What’s the deal with this silly-looking conditional? Well,
it turns out to actually be equivalent to p⇒ q. Check it out:

p⇒ q ≡ ¬p ∨ q

≡ q ∨ ¬p
≡ ¬(¬q) ∨ ¬p
≡ ¬q ⇒ ¬p

So to prove a statement of the form p ⇒ q, it is sufficient to prove ¬q ⇒ ¬p.
Sometimes, this can make the proof a lot easier. Here’s an example. (It is the
converse of Proposition 9.)

Proposition 10. If n is an integer such that n2 is odd, then n is odd.

Proof attempt. Assume n2 is odd, so that n2 = 2k + 1 for some integer k. Then
n =
√
2k + 1.

Where do we go from here? It’s not even clear that
√
2k + 1 is an integer,

let alone an odd one. The contrapositive comes to the rescue.

Proof of Proposition 10. We proceed by contraposition. Suppose that n is not
odd; that is, n is even. So there exists an integer k such that n = 2k. Then
n2 = (2k)2 = 4k2. Setting l = 2k2, we have n2 = 2l, so n2 is even. Hence n2 is
not odd.

Proofs by contradiction. We now discuss a powerful method of proof, which
dates back to at least the ancient Greeks and referred to for much of Western
history by its Latin name, reductio ad absurdum. It proceeds to prove a state-
ment p by assuming its negation ¬p holds, then deriving a contradiction, i.e.,
a statement whose truth value is 0. By doing this, one will have proved that
¬p⇒ 0, which in turn shows that p is true, since

¬p⇒ 0 ≡ ¬(¬p) ∨ 0 ≡ p ∨ 0 ≡ p.

Here is an example of a proof by contradiction.

24 marcel goh

Proposition 11. There is no least positive rational number.

In U = Q, one way to formulate this is

¬
(
∃x : x > 0 ∧ (∀y : y > 0⇒ x ≤ y)

)
.

Proof. Suppose, towards a contradiction, that there exists some rational x > 0
such that for all y ∈ Q with y > 0, x ≤ y. Then, we can apply this property with
y = x/2 to see that x ≤ x/2. Since x is positive, we can divide this inequality
by x on both sides to obtain 1 ≤ 1/2. But this is absurd, since 1/2 < 1. This
contradiction completes the proof.

Here is another classical example of a proof by contradiction. It was known
to the Pythagoreans.

Theorem 12. The number
√
2 is irrational.

Proof. Suppose, towards a contradiction, that
√
2 is rational. Then there are

integers p and q such that
√
2 = p/q, and furthermore, we can assume that p

and q do not have any common factors, since if they did, we could divide them
out and the ratio would remain the same. Squaring both sides of the equation,
we have 2 = p2/q2, or in other words, 2q2 = p2. This implies that p2 is even, so
by (the contrapositive of) Proposition 10, p is even as well. That means we can
write p = 2r for some integer r, and substitute this new information into the
above equation to obtain 2q2 = (2r)2 = 4r2. Dividing out by 2 yields q2 = 4r2,
so q2 is even, and so is q.

We have deduced that p and q are both even. On the other hand, we assumed
they had no common factors. This is a contradiction.

Earlier we described the composition of a proof as playing a game with a
supernatural adversary. To prove something by contradiction, then is is akin
to starting the game by letting adversary believe he has already won, and then
working from that assumption to derive an impossibility. Quite the devious
strategem.

Reductio ad absurdum, which Euclid loved so much,

is one of a mathematicians finest weapons.

It is a far finer gambit than any chess gambit:

a chess player may offer the sacrifice of a pawn

or even a piece,

but a mathematician offers the game.

— G. H. HARDY, A Mathematician’s Apology (1940)

math fall 25

Case analysis. For all n ≥ 2 and all propositions p1, . . . , pn, q, we have the
equivalence

(p1 ∨ p2 ∨ · · · ∨ pn)⇒ q ≡ (p1 ⇒ q) ∧ (p2 ⇒ q) ∧ · · · ∧ (pn ⇒ q).

(As an exercise, prove this when n = 2. Later on, when we learn about mathe-
matical induction, you’ll be able to prove it in general.)

Why is this useful? Well, if we have two or more propositions p1, p2, . . . , pn
such that at least one of them must hold, that is,

p1 ∨ p2 ∨ · · · ∨ pn ≡ 1,

then if we are able to show that

p1 ⇒ q, p2 ⇒ q, . . . , and pn ⇒ q

all hold, then we will have shown

1⇒ q ≡ ¬1 ∨ q ≡ 0 ∨ q ≡ q.

Let’s see an example of this in action.

Proposition 13. For all integers n ≥ 0, 1 + (−1)n(2n− 1) is a multiple of 4.

Proof. Let an integer n ≥ 0 be given. We know that n is even or n is odd.
If n is even, then n = 2k for some integer k, and

1 + (−1)2k
(
2(2k)− 1

)
= 1 + 1k(4k − 1) = 4k,

which is a multiple of 4.
If n is odd, then n = 2k + 1 for some integer k, and

1 + (−1)2k+1
(
2(2k + 1)− 1

)
= 1− (4k + 2− 1) = 1− (4k + 1) = −4k,

which is also a multiple of 4.

.ix Sometimes, the cases into which one might split the proof are not so obvious.

Proposition 14. There exist irrational numbers a and b such that ab is rational.

Proof. Consider the number (
√
2)

√
2. It is either rational or irrational.

If it is rational, then we can set a = b =
√
2, which we already know to be

irrational, by Theorem 12.

If it is irrational, then we can set a = (
√
2)

√
2 and b =

√
2. We compute

ab =
(
(
√
2)

√
2
)
√
2
= (
√
2)

√
2·
√
2 = (

√
2)2 = 2,

which is rational.

Note that in this proof, we did not need to know whether (
√
2)

√
2 is rational

or not; we just know that it must either be rational or irrational. (In fact, it is

known that (
√
2)

√
2 is irrational, but the usual proof of this requires some notions

from complex analysis as well as Galois theory, subjects that are typically not
encountered until at least the second or third year of a mathematics degree.)

Mathematical induction. Sometimes we want to prove an infinite number of
statements, indexed by the natural numbers. If the complexity of the statements
sort of “grows” in n (a vague notion to be made precise soon), the following
theorem holds.

26 marcel goh

Theorem 15 (Principle of mathematical induction). Let P (n) be a family of
predicates indexed by n ∈ N. Let m ∈ N. If

i) P (m) holds; and

ii) for all n ≥ m,

(
P (m) ∧ P (m+ 1) ∧ · · · ∧ P (n)

)
⇒ P (n+ 1)

then P (n) holds for all n ≥ m.

In the following proof, we use the well-ordering principle, which is the fact
that every nonempty subset of the natural numbers has a least element. You can
see the proof of the well-ordering principle in a higher-level set theory course.

Proof. Assume that (i) and (ii) both hold. Our goal is to prove that P (n) is true
for all n ≥ m, so we shall suppose, towards a contradiction, that there is some
n ≥ m such that ¬P (n) holds. (As an exercise, convince yourself, via symbolic
manipulations, that

¬∀n : n ≥ m⇒ P (n) ≡ ∃n : n ≥ m ∧ ¬P (n).)

In other words, the set of n ≥ m such that ¬P (n) holds is nonempty, so it has
a least element, call it k. So k ≥ m, and we cannot have k = m due to (i), so
k > m. Furthermore, by the minimality of k, the statements P (m), P (m + 1),
all the way up to P (k−1) are true. By (ii) though, this implies that P (k) holds:
a contradiction.

When proving something by induction, we need to prove two things: one
of the form (i) and another of the form (ii). The former is called the base case

and the latter the induction step or inductive step. The assumption to the left
of the⇒ symbol in (ii) is called the induction hypothesis or inductive hypothesis.
Technically, the theorem above is called the principle of strong induction; the
principle of weak induction has

ii)′ for all n ≥ m, P (n)⇒ P (n+ 1),

instead of the stronger (ii). It turns out that both types of induction are
actually equivalent, so we’ll use both interchangeably. More often than not, the
hypothesis (ii)′ is perfectly sufficient, and in these cases we’ll simply use weak
induction so as not to clutter our proofs with lots of unused hypotheses.

Here is an example. Suppose we want to find (and prove) a formula for the
sum of the first n odd numbers. The first thing to do is to try some small cases.
When n = 1, the sum is just 1. When n = 2, the sum is 1 + 3 = 4, when n = 3,
we have 1 + 3 + 5 = 9, and for n = 4, we compute 1 + 3 + 5 + 7 = 16. So the
pattern goes 1, 4, 9, 16, . . ., which leads us to conjecture that the sum of the first
n odd numbers might equal n2. In fact, this is true, and we shall prove it by
induction.

math fall 27

Proposition 16. For all integers n ≥ 1,

n∑

i=1

(2i− 1) = n2.

Proof. By induction on n. First we prove the base case, n = 1. We have

1∑

i=1

(2i− 1) = 2− 1 = 1 = 12.

Now for the inductive step. Let n ≥ 1 and assume that

n∑

i=1

(2i− 1) = n2.

Then
n+1∑

i=1

(2i− 1) =
n∑

i=1

(2i− 1) +
(
2(n+ 1)− 1

)

= n2 + 2n+ 2− 1

= n2 + 2n+ 1

= (n+ 1)2,

where it is in the second line that we used the inductive hypothesis.

The first thing to notice about doing a proof by induction is that the proof
method itself doesn’t tell you what it is you should prove. You have to guess at
the correct statement first. Also, proofs by induction are often “unenlightening,”
in that they often don’t reveal the fundamental reasons why something might
be true. (The previous proposition can be illustrated by a rather simple picture,
which is not a proof, but is somewhat more elucidating that the induction proof.)

A longer example now. Suppose we have a pile of n stones, with n ≥ 1. We
have a job, which can be described by a pseudo-algorithm.

Algorithm S (Divide stones). The input to this algorithm is an integer n ≥ 1,
representing a number of stones. We have a list PILES of integers representing
a collection of piles of stones, as well as an integer variable BALANCE. Initialise
PILES⇐ 1 (one pile with n stones), and set BALANCE← 0. This algorithm splits
the stones into n piles of 1 stone each, accumulating profits into BALANCE along
the way.

S1. [Done?] If every element of PILES is 1, terminate the algorithm and output
BALANCE.

S2. [Choose a pile.] Select some element m > 2 from PILES and remove it from
the list. (The variable m is the number of stones in this pile.)

28 marcel goh

S3. [Split.] Let k and l be two numbers with k+ l = m. We append PILES⇐ k
and PILES ⇐ l, and increment BALANCE ← BALANCE + k · l. (We have split
pile n into two piles of size k and l, and the payout for doing so is k · l
dollars.)

S4. [Loop.] Go to step S1.

This is not, strictly speaking, an algorithm, since we didn’t specify how
the algorithm should choose the integers k and l that add up to m in step
S3. However, running through a few instances with, say, n = 6, on paper, using
whatever choices of split you like in every iteration of step S3, you’ll find that the
algorithm always terminates with BALANCE = 15. Trying a few different starting
values of n might lead you to conjecture the following proposition, which we will
prove by (strong) induction.

Proposition 17. For a given input n, Algorithm S always outputs BALANCE =
n(n− 1)/2, regardless of the choice of split at any given iteration of step S3.

Proof. By induction on n. For the base case n = 1, note that we immediately
output BALANCE = 0 in the very first step of the algorithm, and 0 = 1(1− 1)/2.

Now for the inductive step, let n ≥ 1 and suppose that for 1 ≤ k ≤ n, the
payout for running algorithm S on input l is l(l − 1)/2. Suppose we have a pile
of n + 1 stones. We shall divide it into piles of size k and size n + 1 − k. The
total payout will be the pay for this division, namely k(n+ 1− k), plus the pay
for further subdividing the two piles. Thus by the induction hypothesis applied
twice, the total payout will be

k(n+ 1− k)+
k(k − 1)

2
+

(n+ 1− k)(n− k)

2

=
2nk + 2k − 2k2 + k2 − k + n2 + n− 2nk − k + k2

2

=
n2 + n

2

=
(n+ 1)

(
(n+ 1)− 1

)

2
,

which is the expected formula for n+ 1.

5. Functions

A function f from a set A to a set B is a subset f ⊆ A×B such that for every
a ∈ A, there is exactly one b ∈ B such that (a, b) ∈ f . (If there is no b ∈ B, or
more than one, we say that f is not well-defined. If (a, b) ∈ f , we write f(a) = b.
The set A is called the domain and the set B is the codomain. The notation
f : A → B is a way of concisely writing “f is a function with domain A and
codomain B.”

Here are some examples and non-examples.

math fall 29

i) The function f : R→ R given by f(x) = x2 is

f =
{
(a, b) ∈ R2 : b = a2

}
,

when written in set-builder notation.

ii) On the other hand, the set

g =
{
(a, b) ∈ R2 : a = b2

}

is not a function, since (1, 1) and (1,−1) are both in g. Furthermore, there
is no element of g with −1 as its first coordinate.

iii) If X = {1, 2, 5} and Y = {0, 1, 2, 3, 4, 5}, then
{
(1, 0), (2, 4), (5, 5)

}

is a function from X to Y .

iv) The set
h =

{
(x, y) ∈ R2 : y = 1/x

}

is not a function, since there is no y such that (0, y) ∈ h. However if we
amend the domain and consider

h =
{
(x, y) ∈

(
R \ {0}

)
×R : y = 1/x

}
,

then in fact, h : R \ {0} → R is a function.

.ix Injective and surjective functions. The range or image of a function f :
A→ B is

f(A) =
{
b ∈ B : there exists a ∈ A such that b = f(a)

}
.

These are all the values f actually outputs. For instance, if we let f : Z→ N be
given by f(n) = n2, then

f(Z) = {. . . , f(−2), f(−1), f(0), f(1), f(2), . . .}
= {. . . , 9, 4, 1, 01, 4, 9, . . .}
= {0, 1, 4, 9, 16, 25, . . .}.

A function f : A→ B is called surjective or onto if f(A) = B, that is, for every
b ∈ B there exists some a ∈ A such that f(a) = b. An example of a surjective
function is f : Q→ Q sending x 7→ x/2. This is because for any q ∈ Q, we can
set r = 2q, and

f(r) =
r

2
=

2q

2
= q.

30 marcel goh

A function f : A → B is called injective or one-to-one if for all a1, a2 ∈ A with
a1 6= a2, we also have f(a1) 6= f(a2). Equivalently, f is injective if f(a1) = f(a2)
implies that a1 = a2 for all a1, a2 ∈ A. For instance, the function f : Z → N

that sends n 7→ n2 is not injective since f(−1) = f(1), but −1 6= 1. On the other
hand, if we modify the domain, considering f : N → N sending n 7→ n2, then
now f is injective, since if f(m) = f(n), then m2 = n2, and there is only one
positive integer that squares to any given integer, so m = n.

Hence we see that any function can be transformed into an injective one, in
principle, by shrinking its domain (though this new function might no longer have
the properties you liked in the original one), and any function f : A→ B can be
made surjective by changing its codomain to its range, i.e., letting B = f(A).

The pigeonhole principle. We now take a brief pause to introduce one of the
most fundamental laws in discrete mathematics, called the pigeonhole principle.
We begin with the following intuitive theorem.

Theorem 18. Let a1, a2, . . . , an be a finite sequence (repeats allowed) of real
numbers. Let

a =
1

n

n∑

i=1

ai

be the average value of the sequence and let m be the maximum value the
sequence attains. Then m ≥ a.

Proof. We have

a =
1

n

n∑

i=1

ai ≤
1

n

n∑

i=1

m =
mn

n
= m.

This theorem can be summed up in one sentence: The maximum is at least
the average. Don’t underestimate this theorem even though its proof was a one-
liner! It is often used to prove highly nontrivial results. (As an exercise, prove
the similar statement: The minimum is at most the average.) From here we are
now equipped to prove (a general version of) the pigeonhole principle.

Theorem 19. Let A and B be finite sets with |A| = m and |B| = n. For every
function f : A→ B, then there is some b ∈ B such that there are at least ⌈m/n⌉
elements a ∈ A with f(a) = b.

Proof. Enumerate B = {b1, b2, . . . , bn}. For 1 ≤ i ≤ n, let ri be the number of
a ∈ A such that f(a) = bi. This is a sequence that adds up to m, since every a
in A maps to exactly one element of B. So the sequence has average m/n, and
by the previous theorem, there must be some j such that rj ≥ m/n. But the ri
are all actually integers (since cardinalities of finite sets are integers), meaning
that rj ≥ ⌈m/n⌉. Letting b = bj completes the proof.

The reason this is called the pigeonhole principle is because of the following
special case.

math fall 31

Corollary 20 (Pigeonhole principle). Let n ≥ 2. If n pigeons nest in n − 1
holes, there is at least one hole that contains at least two pigeons.

Proof. Let A be the set of pigeons and B the set of pigeonholes. Let f be any
function sending the set of pigeons to the set of holes. By the previous theorem,
there is some hole with at least ⌈n/(n − 1)⌉ = 2 pigeons in it. (This is because
1 < n/(n− 1) < 2 for all integers n ≥ 2.)

Bijections. A function f is called bijective (or a bijection, or a one-to-one cor-

respondence) if it is injective and surjective. Bijections are important because of
the following proposition.

Proposition 21. Let A and B be finite sets. Then

i) there exists a bijection f : A→ B if and only if |A| = |B|; and
ii) if |A| = |B| and f : A→ B then f is injective if and only if f is surjective.

Proof. Suppose |A| = |B| = n. Then choose an ordering a1, . . . , an of A and an
ordering b1, . . . , bn of B. Let f(ai) = bi for all 1 ≤ i ≤ n. By construction, this
is a bijection, proving one direction of (i).

On the other hand, suppose |A| 6= |B| (so we prove this direction by con-
traposition). If A < B, then f cannot be surjective, since the image of f has
size at most |A| < |B| (at least one element of B must be missed). If A > B,
then |A|/|B| > 1, so by Theorem 19, there is some element b ∈ B such that the
number of a ∈ A mapping to b is at least ⌈|A|/|B|⌉ ≥ 2. This means that f is
not injective. We have proved part (i).

To prove part (ii), let |A| = |B| and let f : A→ B. First we assume that f
is injective. We enumerate A = {a1, a2, . . . , an}. Then

f(A) =
{
f(a1), f(a2), . . . , f(an)

}
⊆ B.

All of the f(ai) are distinct, since if f(ai) = f(aj), then ai = aj . So
∣
∣f(A)

∣
∣ =

|A| = n, and f(A) is a size n subset of B, which also has size n. Hence f(A) = B;
that is, f is surjective.

Lastly, suppose f is not injective (again we are using contraposition). So
there are ai and aj such that ai 6= aj but f(ai) = f(aj). So

∣
∣f(A)

∣
∣ =

∣
∣
{
f(a1), f(a2), . . . , f(an)

}∣
∣ < n = |B|,

so f(A) 6= B and f is not surjective.

Item (i) of the previous proposition should be entirely intuitive, especially
if we use the alternative nomenclature “one-to-one correspondence” instead of
“bijection.” (In fact, we already implicitly used (i) in these notes, in the proof of
Proposition 5.) Item (ii) is perhaps not as immediate, but should become clear
if you work it out with a picture.

Bijections. A function f : A→ B is called invertible if there exists g : B → A
such that

32 marcel goh

i) for all b ∈ B, f
(
g(b)

)
= b; and

ii) for all a ∈ A, g
(
f(a)

)
= a.

If g exists, it can be shown that g must be unique, so we write g = f−1 and
speak of the inverse of f .

Proposition 22. Let f : A→ B be a function. Then f is invertible if and only
if f is bijective.

Proof. First we assume that f is invertible. So there exists an inverse g of f .
For each b ∈ B, setting a = g(b) we have

f(a) = f
(
g(b)

)
= b.

This proves that f is surjective. To show that f is injective, suppose that f(a1) =
f(a2). By applying g on both sides, we have g

(
f(a1)

)
= g

(
f(a2)

)
, whence

a1 = a2, by definition of g.
Now assume that f is bijective. We need to define g : B → A. Well, gven

any b ∈ B, there is some a such that f(a) = b, from surjectivity of f , and this a
is unique, since f is injective. So set g(b) = a (and repeat this process for every
b ∈ B). We have f

(
g(b)

)
= f(a) = b, and for every a ∈ A, by definition of g the

element g
(
f(a)

)
is the unique element in A that gets brought to f(a) by f , has

to be a itself.

Sometimes to prove that two sets have the same cardinality, it is easier
to prove that there exists a bijection (as we already saw in the example of
Proposition 5), and sometimes to prove that a function is a bijection, it is easier
to show that it has an inverse, rather than messing around with the definitions
of injective and surjective. Here’s an example.

Proposition 23. Let X be a finite nonempty set. Let E be the set of all subsets
of X with even cardinality, and let F be the set of all subsets of X with odd
cardinality. Then |E| = |F |.
Proof. We shall construct a function f : E → F . Fix one specific x ∈ X; we can
do this because X 6= ∅. Now, for all A ∈ E, let

f(A) =

{
A \ {x}, if x ∈ A;
A ∪ {x}, if x /∈ A.

Note that since |A| is even for all A ∈ E, the cardinality of f(A) is odd (in the
first case it is |A| − 1 and in the second case it is |A| + 1. This shows that f
is indeed a function with codomain F . Now to prove |E| = |F | we will show
that f is bijective, which we do by showing that f is an inverse (as an exercise,
you might instead try to prove bijectivity from the definitions of injective and
surjective).

We define g : F → E by

g(A) =

{
A \ {x}, if x ∈ A;
A ∪ {x}, if x /∈ A.

math fall 33

As before,
∣
∣g(A)

∣
∣ is even, since A is assumed to be a member of F now. Now for

any A ∈ E,

g
(
f(A)

)
=

{
g
(
A \ {x}

)
, if x ∈ A;

g
(
A ∪ {x}

)
, if x /∈ A

=

{(
A \ {x}

)
∪ {x}, if x ∈ A;

(
A ∪ {x}

)
\ {x}, if x /∈ A

=

{
A, if x ∈ A;
A, if x /∈ A

= A.

The proof that f
(
g(A)

)
= A is similar. Thus g is the inverse of f .

6. Cardinality

.ix Earlier, we defined the cardinality of a set to be the number of elements it
contains. What, then, is the cardinality of N? How about R? You might say
∞, but this is not a number (at least, it’s not an element of N, the way all
cardinalities of finite sets are). So perhaps we should amend our question to
the following: When do infinite sets have the same size? Our experience with
functions leads us to the answer: When there exists a bijection between them.
We shall say that A and B are equipotent (or equinumerous, or have the same

cardinality) if there exists a bijection between A and B. In this case we write
|A| = |B|.

As an example, the sets N and N \ {0} are equipotent, since f given by
n 7→ n + 1 is a bijection N → N \ {0}. (Check that f−1(m) = m − 1 is its
inverse.)

It is even possible to remove an infinite number of elements from N and
end up with something still equipotent with N. To see this, let E be the set of
nonnegative even integers, and consider the function f : N→ E sending n 7→ 2n.
This is injective because if 2m = 2n, then dividing out by 2 on both sides yields
m = n. It is surjective because if n ∈ E, then n = 2k for some k ∈ N, by
definition, and f(k) = 2k = n.

So we can find subsets of N equipotent with it. It turns out we can also find
supersets of N with the same property.

Theorem 24. We have |N| = |Z|.
Proof. We define f : N→ Z by

f(n) =

{
n
2 , if n is even;
−n+1

2 , if n is odd.

We shall show that f is a bijection.
Note first that if n is even, then f(n) ≥ 0, and if n is odd, then f(n) < 0.

So if f(m) = f(n) for some m,n ∈ N, then f(m) and f(n) must either both be

34 marcel goh

negative, or both be nonnegative. Either way, m and n are either both even or
they are both odd. If m and n are both even, then from f(m) = f(n) we derive

m

2
=

n

2
,

whence multiplying by 2 on both sides we see that m = n. If m and n are both
odd, then

−m+ 1

2
= −n+ 1

2
,

so, multiplying by −2 and subtracting 1 from both sides we have m = n in this
case as well.

Now we show that f is surjective. Let k ∈ Z. If k ≥ 0, then consider n = 2k.
We have

f(n) = f(2k) =
2k

2
= k.

If k < 0, then consider n = −2k−1. (Check that this is an element of N.) Then

f(n) = f(−2k − 1) = −−2k − 1 + 1

2
= −−2k

2
= k.

This shows that f is surjective, so f is in fact bijective and we conclude that
|N| = |Z|.

We say that a set A is countably infinite if there exists a bijection f : N→ A,
that is, if |N| = |A|. A set is said to be countable if it is either finite or countably
infinite. Otherwise it is called uncountable. The previous theorem shows that Z
is countably infinite.

Sometimes it is difficult to come up with a bijection directly. Instead, we
would like to find an injection from A to B (which, in some sense, shows that
|A| ≤ |B|), and then an injection from B to A. This is made possible by the
following useful theorem, named for Ernst Schröder and Felix Bernstein, who
independently proved it in 1898. The proof is a bit difficult, so it’s technically
outside the scope of the course. For fun, you might try to do it as an exercise.

Theorem 25. (Schröder–Bernstein theorem). If there exists an injective func-
tion f : A → B and another injective function g : B → A, then there is a
bijection h : A→ B.

*Proof. We present the proof as a (difficult) exercise. Here is the roadmap. Call
b ∈ B unattached if there is no a ∈ A such that f(a) = b. Let h : B → B be
given by h(b) = f

(
g(b)

)
. Given b, b′ ∈ B, we shall say that b is a peer of b′ if

either b = b′ or there exists some n ∈ N such that

b = h(h(· · · (h
︸ ︷︷ ︸

n times.

(b′)) · · ·))

Say that b ∈ B is a PAE if it is the peer of an unattached element. (So unattached
elements are automatically PAEs, by setting n = 0.)

math fall 35

a) Show that if a ∈ A is such that f(a) is a PAE, then there is a unique element
b∗ ∈ B such that g(b∗) = a, and that this element is a PAE.

By part (a), if f(a) is a PAE, it makes sense to speak of g−1(a). It is the element
b∗ ∈ B such that g(b∗) = a. From here we define

r(a) =

{

g−1(a), if f(a) is a PAE;
f(a), otherwise.

b) Show that if b ∈ B is a PAE then so is f
(
g(b)

)
.

c) Show that r is surjective. [Hint: Do a proof by cases. Every b ∈ B is either
a PAE or it is not a PAE.]

d) We already proved in part (a) that if f(a) is a PAE, then so is r(a). Prove
the converse of this statement.

e) Show that r is injective, and therefore bijective. [Hint: Assume r(a1) =
r(a2), and do a proof by cases again. Part (d) will be useful here.]

Once again, this proof is outside the scope of the course. Don’t lose sleep
over it if you can’t do it. Feel free to ask questions at office hours if you get
stuck.

Using the Schröder–Bernstein theorem, we now show that the Cartesian
product of two countable sets is also countable. In the proof, we shall employ
the fact that if a set A is countable, then there exists an enumeration

A = {a0, a1, a2, . . .}.

(If f is the bijection given by the definition, we can set a0 = f(0), a1 = f(1),
and so on.)

In the following proof, we’ll also use the Fundamental Theorem of Arith-
metic, which we state now, and prove later in the course (in the number theory
section). It says that any integer can be factored as a product of primes, a
theorem you should have learned in grade school.

Theorem 26 (Fundamental Theorem of Arithmetic). Every positive integer
n ≥ 2 can be factored into a product

p1
v1p2

v2 · · · pmvm ,

where m ≥ 0 is an integer, p1, p2, . . . , pm are distinct primes, and v1, v2, . . . , vm
are positive integers. This factorisation is unique up to the order of the primes.

Theorem 27. IfA andB are countably infinite sets, thenA×B is also countably
infinite.

Proof. Enumerate A = {a0, a1, . . .} and B = {b0, b1, . . .}. Now given (ai, bj) ∈
A×B for some i, j ∈ N, we can let

f(ai, bj) = 2i3j .

36 marcel goh

We show that this defines an injective function. Suppose that f(ai, bj) =

f(ai′ , bj′). Then 2i3j = 2i
′

3j
′

, and by the uniqueness of prime factorisations
in the Fundamental Theorem of Arithmetic, we see that i = i′ and j = j′.

Now we produce an injection g : N→ A×B by simply setting

g(n) = (an, b0).

It is clear this is injective, since if g(m) = g(n), then (am, b0) = (an, b0), and
that implies that m = n.

Corollary 28. We have |Z× Z| = |N|.
Proof. We proved earlier that Z is countably infinite, so we may apply the
previous theorem with A = B = Z.

This corollary concerning Z × Z allows us to prove that Q is countable as
well.

Theorem 29. The set Q of rational numbers is countable.

Proof. We define f : Q → Z × Z as follows. For an element q ∈ Q, we let
q = a/b the fraction q written in lowest terms (where a ∈ Z and b ∈ N \ {0}).
Then we set f(q) = (a, b). This is an injective function because if f(q) = f(q′),
then writing q = a/b and q′ = a′/b′ in lowest terms, we have (a, b) = (a′, b′), so
q = a/b = a′/b′ = q′.

To define an injection g : Z × Z → Q, we recycle the injection we had
from the proof of Theorem 27. We already know that Z is countable, so fix an
enumeration Z = {a0, a1, a2, . . .}. Then let g(ai, aj) = 2i3j . The range of g is a
subset of N, so a fortiori it is a subset of Q, and we already showed before that
it is an injection.

We have shown that |Q| = |Z × Z|, which in turn shows that |Q| = |N|,
after applying Corollary 28.

So far, we have just given lots of examples of countably infinite sets. Finally,
we give an example of a set that is not countably infinite.

Theorem 30. The set A of all infinite binary strings is uncountable.

Proof. Certainly A is not finite, so we need to show that |N| 6= A.
Let f : N → A. We shall show that f is not surjective. For all m,n ∈ N,

let am,n be the nth bit of f(m). Consider the infinite binary string

s = (1− a0,0, 1− a1,1, 1− a2,2, 1− a3,3, . . .).

This string s cannot equal f(m) for any m ∈ N, since given an arbitrary m, the
mth bit of f(m) is am,m, whereas the mth bit of s is 1 − am,m. Hence there is
some s ∈ A such that f(m) 6= s for all m ∈ N. So f is not surjective.

Since there can be no surjection f : N → A, a fortiori we cannot have a
bijection N→ A. We conclude that |A| 6= |N|.

math fall 37

The proof above was published by Georg Cantor in 1891, and hence is known
as Cantor’s diagonal argument. The technique has since been used to prove many
other things.

The set of all infinite binary strings is in bijection with the set of all real
numbers in the interval [0, 1). If we’re being extra pedantic, we need to forbid an
infinite trailing string of all 1s, since, e.g., 0.0111 . . . = 0.1000 . . . after carrying
the 1s (akin to the fact that, e.g., 0.0999 . . . = 0.1). After dealing with this
detail, one will have shown that

∣
∣[0, 1]

∣
∣ 6= |N|.

7. Relations

.x A relation on a set X is a subset R ⊆ X × X. If (a, b) ∈ R we write aRb and
say “a is related to b.” Here are some examples.

i) The set L =
{
(a, b) ∈ R × R : a < b

}
is a relation. For instance, we can

write (2, π) ∈ L, or 2Lπ, or 2 < π (which is the more common notation for
this relation).

ii) The set E =
{
(a, b) ∈ R × R : a = b

}
is a relation (it is the “equals”

relation).

iii) On Z, the set

R =
{
(−1, 4), (8,−3), (0, 0), (0, 1)

}

is a relation.

iv) For any set A, a function f : A→ A is by definition a subset of A×A, and
hence is an example of a relation.

v) Let H be the set of all humans, define M ⊆ H×H by setting (h1, h2) if and
only if h1 is married to h2. For instance,

(Michelle Obama,Barack Obama) ∈M.

On the other hand, it is unfortunately the case that

(Marcel Goh,Taylor Swift) /∈M.

Properties of relations. Let R ⊆ A×A be a relation. R is called

i) reflexive if for all a ∈ A, aRa;

ii) symmetric if for all a, b ∈ A with aRb, we also have bRa; and

iii) transitive if for all a, b, c ∈ A with aRb and bRc, we also have aRc.

Going back to the examples we had above, the relation L is transitive but
neither reflexive nor symmetric, the relation E satisfies all three properties, the
relation R satisfies none of them, and the relation M is symmetric but neither
reflexive nor transitive. (Convince yourself of all of these facts.)

38 marcel goh

As a more involved example, let X be any set with |X| ≥ 2. On 2X , define
a relation R by

(A,B) ∈ R⇔ A ∩B 6= ∅

for all A,B ⊆ X. Which of the three properties above does R satisfy?
Is it reflexive? Well, is it true that for all A ⊆ X, A ∩ A 6= ∅? The answer

is no, since we have ∅ ∩ ∅ = ∅, so we have (∅, ∅) /∈ R.
Is R symmetric? Well, if A ∩ B 6= ∅, then since ∩ is commutative, we have

B ∩ A 6= ∅ as well, so (A,B) ∈ R implies that (B,A) ∈ R. In other words, yes,
R is symmetric.

Is R transitive? If A ∩ B 6= ∅ and B ∩ C 6= ∅, does that necessarily mean
that A ∩ C 6= ∅? The answer is no. Here’s the proof. Since |X| ≥ 2 we can
find x, y ∈ X with x 6= y. Let A = {x}, B = {x, y}, and C = {y}. Then
A ∩B = {x} 6= ∅, B ∩ C = {y} 6= ∅, but alas A ∩ C = ∅.
Equivalence relations and classes. If R is reflexive, symmetric, and transi-
tive, then we say that R is an equivalence relation. Here are two examples (as
an exercise, prove that both of these are equivalence relations).

i) Let F be the set of all formulas in propositional logic with the variables p,
q, and r, and operations ¬, ∧, and ∨. The relation ≡ defined by f1 ≡ f2 if
and only if f1 and f2 have the same truth table is an equivalence relation.

ii) On the set R2, define the relation R ⊆ R2 ×R2 by letting (x, y)R(w, z) if

and only if
√

x2 + y2 =
√
w2 + z2. This is also an equivalence relation

If R is an equivalence relation, often we shall write x ∼ y to mean xRy.
Sometimes we might even just say that ∼ is the equivalence relation.

Let R ⊆ A × A be an equivalence relation. Define the equivalence class of
a ∈ A to be the set

[a] = {b ∈ A : a ∼ b}.
This is the set of all b ∈ A that are related to a.

Take for instance the example F above of all formulas under the relation ≡.
The equivalence class of the formula p∨¬p is the set of all formulas whose truth
table contains only 1s, that is, the set of all tautologies. And for the example R
above, the equivalence class of the point (1, 3) is the set

[
(1, 3)

]
=

{
(x, y) ∈ R2 :

√
10 =

√

x2 + y2
}
;

that is, the circle of radius
√
10 centred about the origin.

We have the following proposition concerning equivalence relations.

Proposition 31. Let R be an equivalence relation on A. Then

i) for all x ∈ A, x ∈ [x];

ii) for all x, y ∈ A, x ∼ y if and only if [x] = [y]; and

iii) for all x, y ∈ A, x 6∼ y if and only if [x] ∩ [y] = ∅.

math fall 39

Proof. Let x ∈ A. Since R is reflexive, x ∼ x, so we have x ∈ [x]. This proves
part (i).

For part (ii), first we prove the “only if” direction. Let x, y ∈ A be such
that x ∼ y. To prove that [x] ⊆ [y], we let z ∈ [x]; so x ∼ z. By symmetry,
we have z ∼ x, and this combined with x ∼ y allow us to deduce that z ∼ y,
by transitivity. Then by symmetry again, we have y ∼ z, so z ∈ [y]. Mutatis

mutandis, i.e., by swapping the roles of x and y, we also have [y] ⊆ [x]. Hence
[x] = [y].

Now for the “if” direction of (ii). Let x, y ∈ A be such that [x] = [y]. By
(i), we have x ∈ [x], but then this means that x ∈ [y]. By definition of [y], this
means that y ∼ x, so x ∼ y by symmetry.

On to part (iii). We prove both implications by contraposition (that is, we
negate both sides of the statement). Let x, y ∈ A be such that [x]∩ [y] 6= ∅. This
means there is some z ∈ A such that z ∈ [x] and z ∈ [y]; so x ∼ z and y ∼ z. By
symmetry, z ∼ y, so by transitivity, we have x ∼ y.

On the other hand, suppose that x, y ∈ A satisfy x ∼ y. By (ii), we have
[x] = [y], so [x] ∩ [y] = [x] 6= ∅, where we know that [x] 6= ∅ because it contains
at least x (again, using (i)).

Let A be a set. A partition of A is a set P of subsets of A (i.e., P ⊆ 2A),
such that

i) for all x ∈ A there exists S ∈ P such that x ∈ S;

ii) for all S1, S2 ∈ P with S1 6= S2, the intersection S1 ∩ S2 is empty; and

iii) ∅ /∈ P .

Here are some examples.

i) Let E be the set of all even integers and F the set of all odd integers. Then
{E,F} is a partition of Z.

ii) The set
{
(−∞, 0), {0}, (0,∞)

}
is a partition of R.

.x If ∼ is an equivalence relation on a set A, then we can define the quotient of
A by ∼ as the set of all equivalence classes of A under ∼. We denote this set by

A/∼ =
{
[x] : x ∈ A

}
.

We use the previous proposition to prove that quotients of sets by equivalence
relations are partitions.

Proposition 32. Let A be a set and ∼ an equivalence relation on A. Then
A/∼ is a partition of A.

Proof. By part (i) the previous proposition, every x ∈ A belongs to the equiva-
lence class [x]. Then, by part (ii) of the previous proposition, we know that for
any equivalence classes [x] and [y] such that [x] 6= [y], we must have x 6∼ y, and
by part (iii) of the previous proposition, we deduce that [x]∩ [y] = ∅. This shows
that A/∼ satisfies the second part of the definition of partition. Lastly, we note

40 marcel goh

that ∅ /∈ A/∼, since every element of A/∼ is equal to [x] for some x ∈ A, and
must thus contain at least the element x.

Let us now revisit the examples of equivalence relations from last class, and
see what partitions they give rise to. In the example F of propositional formulas
with variables p, q, and r, under the equivalence relation ≡, the set of equivalence
classes is the set of all possible truth tables on three variables. Each such truth
table has 8 rows, so there are 28 equivalence classes. In other words, |F/≡| = 28.

How about the relation R defined on R2 where

(x, y) ∼ (w, z) if and only if
√

x2 + y2 =
√

w2 + z2?

Well, each
[
(x, y)

]
is the circle of radius

√

x2 + y2 centred around the origin, so
R2/∼ is the set of all circles in the plane centred at (0, 0).

II. NUMBER THEORY

Die Mathematik ist die Königin der Wissenschaften

und die Zahlentheorie ist die Königin der Mathematik.

— Attributed to C. F. GAUSS (1777–1855)

8. Division

Let a, b ∈ Z. We say that a divides b (or b is a multiple of a, or b is divisible by
a, or a is a factor of b) if there exists n ∈ Z such that b = na. In this case we
write a | b. For example, 2 | 10, since 10 = 5 · 2, but 3 does not divide 10, since
there does not exist n ∈ Z such that 10 = 3n. This defines a relation on Z.

Note that for all n ∈ Z, n | 0, since 0 = 0 · n. We also have 1 | n for all
n ∈ Z¡ since n = n · 1. It is true that 0 | 0, since we have, say, 0 = 1 · 0, but
for all nonzero n ∈ N, 0 does not divide n, since all multiples of 0 equal 0 (and
thus cannot equal n). Further properties of the “divides” relation are given by
the next proposition.

Proposition 33. For all a, b, c, d ∈ Z,

i) if a | b, then a | bc;
ii) if a | b and a | c, then a | (b+ c);

iii) if a | b and b | c, then a | c;
iv) if a | b and b 6= 0, then |a| ≤ |b|; and
v) if a | b and b | a, then |a| = |b|.
Proof. We leave parts (i) and (ii) as exercises to the reader.

For part (iii), if a | b and b | c, then there are integers k and l such that
b = ka and c = lb. Then c = kla, so a | c (since kl is also an integer).

For part (iv), suppose that a | b and b 6= 0. Then b = ka for some k ∈ Z,
and k 6= 0 since b 6= 0. This means that |b| = |k| · |a|, but |k| ≥ 1, so |b| ≥ |a|.

For part (v), assume that a | b and b | a. If a 6= 0 and b 6= 0, then we may
apply part (iv) twice to get |a| ≤ |b| and |b| ≤ |a|, which together imply |a| = |b|.
If b = 0, then 0 | a so a = 0 as well, and |a| = |b|. Likewise, if a = 0, then 0 | b,
so b = 0 and in this case as well, |a| = |b|.

In grade school, you learned how to divide an integer by another one, obtain-
ing a quotient and a remainder. We state this as a theorem. Its proof (which we
shall consider outside the scope of the course, but which we include as optional
reading for those interested) relies on the well-ordering principle (which we’ve
used already in these notes) and the Archimedean property of R, which states
that for every x ∈ R there exists n ∈ N such that n > x. (One can learn the
proof of the Archimedean property from an introductory course in analysis, e.g.,
MATH 242/254.)

Theorem 34 (Division algorithm). Let a, b ∈ Z with b > 0. Then there exist
unique integers q and r such that a = bq + r and 0 ≤ r ≤ |b|.
*Proof. First we show that such integers q and r exist. If b | a then a = kb for
some k ∈ Z, and we can set q = k and r = 0.

If a is not divisible by b, then consider the numbers

. . . , a− 3b, a− 2b, a− b, a, a+ b, a+ 2b, a+ 3b,

math fall 43

Let S be the set of these integers that are positive. Symbolically, we have

S = {a− kb : k ∈ Z and a− kb ≥ 0}.

By the Archimedean property, there is some n ∈ N such that n > −a, which
implies that nb ≥ n > −a (here we use the fact that if b > 0 and b is an integer,
then b ≥ 1). From this we derive a > −nb, and hence a + nb = a − (−n)b > 0.
This shows that S is nonempty.

Since S is a nonempty subset of N, by the well-ordering principle it has a
least element, call it r. By definition of S, there must be some integer q such
that r = a− qb, so a = bq + r. We now claim that 0 < r < b.

We know that r > 0, since all elements of S are positive by definition.
Suppose, for a contradiction, that r ≥ b. Then a− bq = r ≥ b, and so

0 ≤ r − b = a− qb− b = a− (q + 1)b.

Since q + 1 is an integer, by definition of S, either r − b is an element of S, or
r − b = 0. Since r was defined to be the minimal element of S, it cannot be the
case that r − b is in S. So r − b = 0. But this means that 0 = a − (q + 1)b;
that is, a = (q+1)b, contradicting our assumption that b does not divide a. The
contradiction allows us to conclude that 0 < r < b (in the case that b does not
divide a). In general, we have shown that 0 ≤ r < b.

Lastly, we need to prove that q and r are uniquely determined by the integers
a and b. Suppose that

a = bq1 + r1 and 0 ≤ r1 < b

and
a = bq2 + r2 and 0 ≤ r2 < b,

for some integers q1, q2, r1, and r2. We shall show that q1 = q2 and r1 = r2.
Well, suppose that r1 6= r2, for a contradiction. Without loss of generality we
can assume that r1 < r2. Then subtracting the two equations, we obtain

0 = a− a = (bq1 + r1)− (bq2 + r2) = b(q1 − q2) + (r1 − r2).

This means that
r2 − r1 = b(q1 − q2),

so we find that b | (r2 − r1). By part (iv) of the previous proposition, we obtain
|b| ≤ |r2−r1|, and we can simply write b ≤ r2−r1, since both of these quantities
are positive. But this is a contradiction, since

0 ≤ r1 < r2 < b,

yields r2 − r1 < b. The contradiction shows that that r2 = r1. Substituting this
into the relation r2 − r1 = b(q1 − q2), we get 0 = b(q1 − q2) and conclude that
q1 − q2 = 0, since b > 0.

44 marcel goh

Let a and b be integers, not both zero. Their greatest common divisor,
gcd(a, b) is defined to be the greatest positive integer d such that d | a and d | b.
Note that gcd(0, 0) is not defined, since all positive integers d satisfy d | 0. On
the other hand gcd(x, 0) is simply |x|, and gcd(x, 1) = 1. Lastly, we don’t need
to worry about negative signs when computing greatest common divisors; i.e.,
gcd(±x,±y) = gcd

(
|x|, |y|

)
.

Euclid’s algorithm. Now we ask ourselves, How do we compute greatest com-
mon divisors in general? The answer lies in one of the oldest algorithms known
to humankind. It appears in Euclid’s Elements, written around 300 b.c.

Algorithm E (Euclid’s algorithm). Given two nonnegative integers a and b,
not both zero, this algorithm outputs gcd(a, b).

E1. If b = 0, then output a and terminate the algorithm.

E2. Since b 6= 0, by the division algorithm we my write a = qb + r, where
0 ≤ r < b. Set a← b, b← r, and return to step E1.

The algorithm will eventually terminate, since the stopping criterion is that
b be equal to 0, and in step E2 we replace b with a number that is strictly closer
to 0. But will it terminate with the correct answer? Well, we know step E1
is correct, because of our earlier observation that gcd(a, 0) = a (whenever a is
positive). On the other hand, it is not at all evident that step E2 will eventually
output gcd(a, b), since we actually overwrite the values of a and b in the step!
The following lemma clarifies the situation.

Lemma 35. Let a, b, q, r ∈ Z be integers such that a = qb+r. Then gcd(a, b) =
gcd(b, r).

Proof. We shall show that for any d ∈ Z,

d | a and d | b if and only if d | b and d | r.

For the forward implication, suppose that a = kd and b = ld for some k, l ∈ Z.
Substituting this into the identity a = qb + r yields kd = ldq + r, whence
r = c(k − lq), so we conclude that c | r. (This is because k − lq ∈ Z.)

For the reverse implication, suppose that b = ld and r = md for some
k, l ∈ Z. Substituting this into a = qb+r, we have a = ldq+md, so a = d(lq+m),
which means that c | a.

We have proved that a and b have the same common factors as b and r, so
they must have the same greatest common divisor.

Now that we are secure in the fact that Euclid’s algorithm will indeed ter-
minate with the correct output, let us now see it in action. Suppose we want to
find gcd(30, 112). We perform successive divisions replacing the pair (a, b) with

math fall 45

a new pair (b, r) each time:

30 = 0 · 112 + 30

112 = 3 · 30 + 22

30 = 1 · 22 + 8

22 = 2 · 8 + 6

8 = 1 · 6 + 2

6 = 3 · 2 + 0

()

We stop once the remainder r equals 0, and the answer is gcd(b, r) = gcd(b, 0) =
b. (So in the example above, the final answer is 2.)

Bézout’s identity. The following theorem allows us to express the greatest
common divisor as a linear combination of the two integers in question.

Theorem 36 (Bézout’s identity). Let a and b be nonzero integers with greatest
common divisor gcd(a, b). Then there exist integers s and t such that

gcd(a, b) = sa+ tb.

Moreover, gcd(a, b) is the least positive integer that can be expressed as an
integer linear combination of a and b.

.x Proof. Let
S = {s′a+ t′b : s′, t′ ∈ Z, ax+ by > 0}.

This set is nonempty, since if a is negative then (−1)a + 0b ∈ S and if a is
positive, then 1a+ 0b ∈ S. Since S is a nonempty set of positive integers, it has
a least element, by the well-ordering principle. Call this integer d = sa+ tb (for
some specific choices of s, t ∈ Z); the claim is that d = gcd(a, b).

By the division algorithm, we may write

a = dq + r

where q and r are integers with 0 ≤ r < d. But we can write

r = a− qd

= a− q(sa+ tb)

= (1− qs)a+ (qt)b,

so r ∈ S ∪ {0}. But r < d, so if r ∈ S, then d would not be the smallest element
of S. So we must have r = 0. This implies that d is a divisor of a. Repeating
this argument with b instead of a, we find that d divides b as well.

We have shown that d is a common divisor of a and b. It remains to show
that it is the greatest one. That is, we must show that if c | a and c | b, then
c ≤ d. Well, if a = kc and b = lc, then the identity

d = sa+ tb = skc+ tlc = (sk + tl)c,

46 marcel goh

shows that d is a multiple of c as well. Since d > 0, this means that c ≤ d.

This theorem is named for Étienne Bézout, who proved an analogous result
(with polynomials instead of integers) in 1779, but the result above for integers
has been known since at least the 1600s.

To actually find the integers s and t such that gcd(a, b) = sa + tb, we first
perform the Euclidean algorithm, keeping track of all our intermediate steps.
Then we combine all the information from each step to work out what s and t
are. For example, in the earlier example showing that 2 = gcd(112, 30), we start
with

2 = 8− 1 · 6,

which is (a rearrangement of) the fifth line of (). Then the fourth line of ()
says that 6 = 22− 2 · 8, so

2 = 8− 1 · (22− 2 · 8) = 8− 22 + 2 · 8 = 3 · 8− 22.

The third line of () tells us that 8 = 30− 1 · 22, which gives

2 = 3 · (30− 1 · 22)− 22 = 3 · 30− 3 · 22− 22 = 3 · 30− 4 · 22.

We now have the number 30 appearing in the expression, we just need to get rid
of the 22 and replace it with 112. To do this we use the second line of (), which
says that 22 = 112− 3 · 30. We end up with

2 = 3 · 30− 4(112− 3 · 30) = 3 · 30− 4 · 112 + 12 · 30 = (−4) · 112 + 15 · 30.

So in the case that a = 112 and b = 30, we have d = 2, s = −4, and t = 15.
We now summarise this section on Bézout’s identity with a little scenario.

Imagine a frog that lives on a doubly-infinite line of lilypads, indexed by the
integers. It starts at the point 0 and can hop in steps of a or b (in either
direction). Theorem 36 tells us that the lilypad d = gcd(a, b) is reachable by the
frog. The next proposition characterises the set of all lilypads that the frog can
get to.

Proposition 37. Let a and b be nonzero integers. The set

X = {s′a+ t′b : s′, t′ ∈ Z}

is exactly the set of multiples of d = gcd(a, b).

Proof. By Bézout’s identity, there exist integers s and t such that d = sa + tb.
First let n ∈ Z be a multiple of d. Then there is k ∈ Z such that n = kd, and
we have

n = kd = d(sa+ tb) = (ds)a+ (dt)b,

which means that n ∈ X (since ds and dt are both integers).

math fall 47

Conversely, suppose that n ∈ X, so n = s′a + t′b for some s′, t′ ∈ Z. Then
since d divides a and d divides b, we can write a = ld and b = md for some
integers l,m ∈ Z. So we have

n = s′a+ t′b = s′ld+ t′md = (s′l + t′m)d,

which shows that d | n, since s′l + t′m is an integer.

As a corollary, if gcd(a, b) = 1, then it is possible for the robot to reach
every integer! The situation in which gcd(a, b) = 1 is very special, so much so
that we have a name for it. We say that integers a and b are relatively prime or
coprime if gcd(a, b) = 1. By Bézout’s identity, a and b are relatively prime if and
only if there are integers s and t such that 1 = sa+ tb. This gives a very quick
and easy way to check if certain numbers are relatively prime. For example, we
have the following proposition.

Proposition 38. For all integers n > 1, n and n+ 1 are relatively prime.

Proof. We have 1 = 1(n+ 1) + (−1)n.

9. Primes

An integer p is prime if p ≥ 2 and for all d ∈ N with d | p, we either have d = 1
or d = p. An integer n is composite if n ≥ 2 and n is not prime. (By negating
the definition of prime, we see that n ≥ 2 is composite if and only if there exist
a, b ∈ {2, . . . , n−1} such that n = ab.) Note that the integers 0 and 1 are neither
prime nor composite.

The following theorem gives another characterisation of prime numbers.

Theorem 39. An integer p with p ≥ 2 is prime if and only if for all a, b ∈ N,
p | ab implies that p | a or p | b.
Proof. First we prove the forward implication. Suppose that p is prime and let
a, b ∈ N be such that p | ab. So there exists an integer k such that ab = kp.
Consider gcd(a, p). Since the only divisors if p are 1 and p, this must be 1 or p.
If it is p, then p | a and we are done. So we restrict our attention to the case
that gcd(a, p) = 1, and our goal is to prove p | b. By Bézout’s identity, there are
integers s and t such that 1 = sa+ tp, so multiplying both sides by b, we have

b = bsa+ btp = skp+ btp = (sk + bt)p,

so p | b.
We prove the reverse implication by contraposition. Now suppose that p

is composite. So there exist integers 2 ≤ a, b ≤ p − 1 such that p = ab. We
want to show that p does not divide a and p does not divide b. We shall do
this by showing that u = a/p and v = b/p are both not integers. Well since
p = ab = upb, by dividing through by p we arrive at 1 = ub, and since b ≥ 2,
u = 1/b is between 0 and 1. This shows that p does not divide a. On the other

48 marcel goh

hand, since p = ab = apv, we have 1 = av, and since a ≥ 2, this means that
v = a/1 is between 0 and 1. Hence p does not divide b.

To illustrate that p really does have to be prime for this theorem to hold,
consider p = 6, a = 2 and b = 15. We have 6 | 30 = 2 · 15, but 6 divides neither
2 nor 15. By induction, the theorem extends to arbitrary finite products.

Corollary 40. Let p be prime and n be a positive integer. If a1, a2, . . . , an are
integers such that p | a1a2 · · · an, then p | ai for some 1 ≤ i ≤ n.

Proof. By induction on n. When n = 1, there is nothing to prove, for if p | a1,
then p | ai for i = 1.

Now suppose the statement holds for n. Assume that p | a1a2 . . . anan+1.
By setting a = a1a2 · · · an and b = an+1, we have p | ab, so by the previous
theorem, either p | a or p | b. If p | b, then p | ai for i = n+ 1, and if p | a, then
p | a1 · · · an, so by the induction hypothesis, p | ai for some 1 ≤ i ≤ n.

Back in Section 6, we used the prime factorisation of integers in a proof,
but didn’t prove that statement itself. It’s finally time to do so. Recall that we
statement we used is that any integer n can be factored into a product

n = p1
v1p2

v2 · · · pkvk

where p1 < p2 < · · · < pk are primes and v1, v2, . . . , vn are positive integers. By
renumbering the primes, allowing them to possibly equal one another, we have
the following equivalent statement.

Theorem 26′ (Fundamental Theorem of Arithmetic, again). Every integer n ≥
2 can be expressed as a product

n = p1p2 · · · pk

where p1 ≤ p2 ≤ · · · ≤ pk are prime numbers. Furthermore, this factorisation is
unique.

Proof. The proof that such a decomposition of n exists is by (strong) induction.
The base case is n = 2. This is already a prime factorisation, since 2 is prime.

For the inductive step, let n ≥ 2 and assume such a decomposition exists
for all 2 ≤ i ≤ n. Now consider n + 1. If n + 1 is prime, then by setting
p1 = n + 1, we have a prime factorisation of n + 1 without getting out of bed.
If n + 1 is not prime, then n + 1 = ab for some integers 2 ≤ a, b ≤ n. By the
induction hypothesis, a and b can be factored into primes; that is, a = p1, . . . , pl
and b = q1, . . . , qm for some primes p1, . . . , pl, q1, . . . , qm. So

n+ 1 = ab = p1 · · · plq1 · · · qm

is a factorisation of n + 1 into primes. It remains to arrange the ps and qs in
nondecreasing order.

math fall 49

Now we prove that the prime factorisation of an integer is unique. In other
words, n ≥ 2 decomposes into

n = p1p2 · · · ps

and

n = q1q2 · · · qt

for primes p1, . . . , ps, q1, . . . , qt, then s = t and pi = qi for all 1 ≤ i ≤ s. We also
prove this statement by induction, but this time it is on the integer s. If s = 1,
then

p1 = n = q1q2 · · · qt.

Note that t has to equal 1 here, since otherwise q1 and q2 would both divide p
and satisfy 2 ≤ q1, q2 ≤ p1, contradicting the fact that p1 is prime. So p1 = q1
and we are done.

Next, suppose that the uniqueness statement holds for s (i.e., for any integer
that decomposes into a product of s primes, the decomposition is unique) and
we want to show that it holds for s+ 1. We assume that

n = p1p2 · · · ps+1

and

n = q1q2 · · · qt,

where p1 ≤ p2 ≤ · · · ≤ ps+1 and q1 ≤ q2 ≤ · · · ≤ qt. We have ps+1 | n =
q1q2 · · · qt, so by the preceding corollary, there exists 1 ≤ i ≤ t such that ps+1 | qi,
and since qi is prime, this means that ps+1 = qi ≤ qt. Similarly, qt divides
n = q1 . . . ps+1, so it divides pj for some 1 ≤ j ≤ s + 1. This means that
qt = pj ≤ ps+1. Hence qt = ps+1. But

p1p2 · · · psps+1 = q1q2 · · · qt,

so we may divide out by ps+1 = qt on both sides to get

n

ps+1
= p1p2 · · · ps = q1q2 · · · qt−1.

By the induction hypothesis, the decomposition of n/ps+1 is unique, so t−1 = s
and pi = qi for all 1 ≤ i ≤ t − 1. This proves that s + 1 = t and pi = qi for all
1 ≤ i ≤ s+ 1.

.x We can use the Fundamental Theorem of Arithmetic to prove the following
generalisation of Theorem 12.

50 marcel goh

Theorem 41. Let k and n be positive integers. Then either k
√
n is an integer

or it is irrational.

Proof. We prove this by contraposition, showing that if k
√
n is rational, then it

must be an integer. Suppose that k
√
n is rational; so there exist integers a and

b with b 6= 0 such that k
√
n = a/b. Without loss of generality, we may choose a

and b such that gcd(a, b) = 1. Writing

a = p1
v1p2

v2 · · · prvr

and
b = q1

w1q2
w2 · · · qsws ,

for primes p1 < p2 < · · · < pr, primes q1 < q2 < · · · < qs, and positive integers
v1, v2, . . . , vr, w1, w2, . . . , ws, all the primes pi and qj must be different, since if
there was a prime in common, call it p = pi = qj , we would have p | gcd(a, b),
contradicting the fact that gcd(a, b) = 1.

Taking the identity k
√
n = a/b to the power of k yields

n =
ak

bk
=

p1
kv1p2

kv2 · · · prkvr

q1kw1q2kw2 · · · qskws

.

Since there do not exist 1 ≤ i ≤ r and 1 ≤ j ≤ s such that pi = qj , this fraction
is in reduced form. But since n is an integer, that means the denominator equals
1. In other words, n = ak, so k

√
n = a is an integer.

Let’s see how to use this theorem. Suppose we want to know if the number
6
√
18 is irrational or not. Well, since 16 = 1 and 26 = 64, we have 16 < 18 < 26,

meaning that 1 < 6
√
18 < 2. (This is because the function f : R→ R defined by

f(x) = x6 is increasing on the interval [1, 2].) Hence 6
√
18 is not an integer, and

by the theorem it must be irrational.
Next, we show that there are infinitely many primes, a theorem first proved

by Euclid.

Theorem 42. There are infinitely many prime numbers.

Proof. Suppose, towards a contradiction, that there are finitely many prime
numbers, call them p1, p2, . . . , pm. Let n = p1p2 · · · pm, and consider the integer
n + 1. Either it is prime or it is not. If n + 1 is prime, then we already have
a contradiction, since n + 1 > pi for all 1 ≤ i ≤ m, and we assumed that the
p1, . . . , pm were all the primes. If n+1 is not prime, then it is divisible by some
prime in our list, call it pi. Hence we can write n = kpi for some integer k, and
we have

kpi = n+ 1 = p1p2 · · · pm + 1.

Rearranging this a bit, we have

1 = kpi − p1p2 · · · pm = pi(k − p1p2 · · · pi−1pi+1 · · · pm);

math fall 51

in other words, pi divides 1. This is a contradiction as 1 is not divisible by any
integer greater than 1.

Though the set P of prime numbers is infinite, it does sort of get “sparser”
as one heads off towards infinity. This is quantified by the following theorem,
proved independently in 1896 by Jacques Hadamard and Charles Jean de la
Vallée Poussin.

Theorem 43 (Prime number theorem). For x ∈ R, let

π(x) =
∣
∣{p ≤ x : p prime}

∣
∣.

Then π(x) ∼ x/ lnx, in the sense that

lim
x→∞

π(x)

x/ lnx
= 1.

The proof is long and arduous, requiring a lot of background in complex
analysis. It is often taught in a first-year graduate class in analytic number
theory. Here is an easy corollary of the prime number theorem.

Corollary 44. Let n be a positive integer and let m be chosen uniformly at
random from the set {1, 2, . . . , n}. Then

(lnn)P{m prime} → 1

as n → ∞. In other words, the probability that m is prime is asymptotically
1/ lnn.

Proof. Since m is chosen uniformly at random from {1, . . . , n}, the probability
P{m prime} equals π(n)/n. So

lim
n→∞

(lnn)P{m prime} = lim
n→∞

π(n) lnn

n
= 1,

by the prime number theorem.

As an example, if we choose a 30-digit number at random (so n = 1030− 1),
the probability that this number is prime is roughly 1/ ln(1030) = 1/(30 ln 10) =
0.0145 or 1.45%.

10. Modular arithmetic

Fix n ≥ 1, and let a, b ∈ Z. We say a is congruent to b modulo n if n | a − b,
i.e., if a− b = kn for some k ∈ Z. Write a ≡ b (mod n) or a ≡n b.

Take for example n = 12. We have, e.g., 4 ≡ 16 (mod 1)4, since 4 − 16 =
−12 = (−1)12, but, e.g., 7 6≡ 17, since 7 − 17 = −10, and 12 does not divide
−10. This situation should be a familiar one, since we are used to working with
numbers modulo 12 when telling the time.

For any fixed n, the set of all (a, b) ∈ Z2 with a ≡n b is a relation on Z. In
fact, we have the following proposition.

52 marcel goh

Proposition 45. For all fixed n, the relation ≡n is an equivalence relation on
the set Z.

Proof. We must show that ≡n is reflexive, symmetric, and transitive.
Let a ∈ Z. We have a− a = 0 = 0 · n, so a ≡ a (mod n), proving reflexivity.
Let a, b ∈ Z and suppose that a ≡n b, so there exists k such that a− b = kn.

Then b− a = (−k)n, so b ≡n a. This proves symmetry.
Lastly, let a, b, c ∈ Z be such that a ≡n b and b ≡n c. So there exist integers

k, l ∈ Z such that a− b = kn and b− c = ln. Then

a− c = (a− b) + (b− c) = kn+ ln = (k + l)n,

which shows that a ≡n c.

Since ≡n is an equivalence relation, it partitions Z into equivalence classes.
We shall denote by [a]n the equivalence class of a modulo n. This is the set

[a]n = {b ∈ Z : a− b = kn for some k ∈ Z} = {a+ ln : l ∈ Z}.

For instance, when n = 3, the set

[0]3 = {. . . ,−6,−3, 0, 3, 6, . . .}

is just the set of all multiples of 3, and we also have

[1]3 = {. . . ,−5,−2, 1, 4, 7, . . .}

and
[2]3 = {. . . ,−4,−1, 2, 5, 8, . . .}.

These are all of the equivalence classes, since, for instance,

[4]3 = {. . . ,−2, 1, 4, 7, 10, . . .} = [1]3.

Lastly, we shall touch upon the modulo operator, which is a feature of many
programming languages. Let a ∈ Z and b ≥ 1. Let a % b = r where q and
r are the integers given by the division algorithm. (That is, a = qb + r where
0 ≤ r ≤ b.)

Proposition 46. Fix an integer n ≥ 2. Let a, b ∈ Z. Then a ≡ b (mod n) if
and only if

a % n = b % n.

Proof. Suppose that a ≡n b, so that there exists k ∈ N such that a − b = kn.
Then, let a = nq1 + r1 and b = nq2 + r2 from the division algorithm. (So
r1 = a % n and r2 = b % n, and we have 0 ≤ r1, r2 < n.) Write

kn = a− b = (q1 − q2)n+ (r1 − r2),

math fall 53

which we can rearrange to

r1 − r2 = kn− (q1 − q2)n = (k − q1 + q2)n.

This implies that r1 − r2 divides n, but since r1, r2 ∈ [0, n), the quantity r1 − r2
is in the range [−n− 1, n). Hence the only way it can divide n is for r1− r2 = 0.
We conclude that a % n = b % n.

For the other direction, we once again let a = nq1+r1 and b = nq2+r2 from
the division algorithm. Now the assumption is that r1 = a % n = b % n = r2.
So

a− b = (q1 − q2)n+ (r1 − r2) = (q1 − q2)n.

This shows that a ≡ b (mod n).

.x This proposition is useful in practice. For example, suppose we want to
know whether 22 ≡ 8 (mod 3). We calculate 22 = 7 · 3 + 1, so 22 % 3 = 1;
meanwhile 8 = 2 · 3 + 2, so 8 % 3 = 2. By the proposition, this means that
22 6≡ 8 (mod 3).

The proposition also implies that for all a ∈ Z and n ≥ 2 one has [a]n =
[a % n]. From the division algorithm, we know that a % n is an element in the
range [0, n); it is equal to the integer r in that range such that we may write
a = qn+ r for some integer q. We may choose to denote the whole equivalence
class by this element r. The set

Z/nZ = Z/≡n =
{
[0], [1], . . . , [n− 1]

}

is called the ring of integers modulo n or the cyclic group on n elements.

Computations modulo n. We can do addition and multiplication modulo n
by first doing addition and multiplication and then taking the remainder with
respect to n. For example, when n = 4 we have the addition table

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

and the multiplication table

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1 .

54 marcel goh

For x, y ∈ Z, if xy = 0, then either x = 0 or y = 0. On the other hand, from the
assumption xy ≡ 0 (mod n) we cannot conclude in general that x ≡ 0 (mod n)
or y ≡ 0 (mod n). As an example, when n = 4 and x = y = 2, neither x nor y
is congruent to 0 modulo 4, but their product is 0 modulo 4. An element a ∈ Z

with a 6≡ 0 (mod n) is said to be a zero divisor if there exists b ∈ Z with b 6≡ 0
(mod n) such that ab ≡ 0 (mod n).

Remember that the numbers in the tables above are elements of Z/nZ (in
the case n = 4), hence they are not really integers so much as equivalence
classes of integers, which are sets! So it is not immediate that addition and
multiplication are well-defined modulo some fixed integer n. For instance, to say
that [3]4 · [1]4 = [3]4, it is not enough to just observe that 3 · 1 = 3. We need to
show that for any integers a ∈ [3]4 and b ∈ [1]4, we have a · b ∈ [3]4. This is the
essence of the following proposition.

Proposition 47. Let a ≡ c (mod n) and b ≡ d (mod n). Then

i) a+ b ≡ c+ d (mod n);

ii) ab ≡ cd (mod n); and

iii) am ≡ cm (mod n) for all m ∈ N.

Proof. By assumption, there are integers k and l such that a − c = kn and
b− d = ln.

To prove (i), we compute

(a+ b)− (c+ d) = a− c+ b− d = kn+ ln = (k + l)n,

so a+ b ≡ c+ d (mod n).
For part (ii), we compute

ab− cd = ab− cb+ cb− cd

= b(a− c) + c(b− d)

= bkn+ cln

= (bk + cl)n,

so ab ≡ cd (mod n).
We prove part (iii) by induction. The base case is m = 0; we have a0 =

1 = c0, so a0 ≡ c0 (mod n). Now let m ≥ 0 and assume that am ≡ cm (mod n).
Combining this with the hypothesis a ≡ c (mod n), we use part (ii) to conclude
that a · am ≡ c · cm (mod n), which simplifies to am+1 ≡ cm+1 (mod n).

We can use this to perform the modulo operation on large numbers without
necessarily knowing the large numbers themselves. For example, let m = 2110−
3 · 13 + 14 and suppose we want to know m % 6.

First we observe that 14 ≡ 2 (mod 6) and 13 ≡ 1 (mod 6). So

m = 2110 − 3 · 13 + 14 ≡6 2110 − 3 · 1 + 2 ≡6 2110 − 1.

math fall 55

Now we deal with the exponent by first taking the base of the exponent modulo
6. We have 21 ≡ 3 (mod 6); hence

m ≡6 310 − 1.

To reduce the exponent, we factorise 10 = 2 · 5, yielding

m ≡6 (32)5 − 1.

But again we can reduce the base here, since 9 ≡6 3, which gives us

m ≡6 35 − 1.

Now since the exponent 5 is prime, we aren’t able to reduce it by factorising.
However, we do have 5 = 2+2+1, and, using once again the fact that 32 = 9 ≡6 3,
we obtain

m ≡6 32 · 32 · 3− 1 ≡6 3 · 3 · 3− 1 ≡6 3 · 3− 1 ≡6 3− 1 ≡6 2.

Inverses modulo n. Considering 2 as a rational number, we say that the
inverse of 2 is 1/2, since 2 · (1/2) = 1. We write 2−1 = 1/2. We shall use the
same terminology in the ring of integers modulo n. An element a ∈ Z is said to
be invertible modulo n if there exists b ∈ Z such that ab ≡ 1 (mod n). In this
case we shall say that b is an inverse of a. In fact, inverses are unique (in Z/nZ).

Proposition 48. Let a, n ∈ Z with n ≥ 2. Then if ab ≡ 1 (mod n) and ac ≡ 1
(mod n), then b ≡ c (mod n).

Proof. We have

b ≡ b · 1 ≡ b(ac) ≡ (ab)c ≡ 1 · c ≡ c (mod n).

Hence we may speak of the inverse of an element a, which we shall denote
by a−1. We have a−1a ≡ 1 ≡ aa−1 (mod n).

For instance, when n = 5, the fact that

2 · 3 ≡5 6 ≡5 1

tells us that 2 (and 3, for that matter) are invertible modulo 5. When n = 6,
is 2 still invertible? Here n is small enough that we can just try all the cases.
We have 2 · 0 = 0, 2 · 1 = 2, 2 · 2 = 4, 2 · 3 = 6 ≡6= 0 2 · 4 = 8 ≡6 2, and
2 · 5 = 10 ≡6 4. Since none of these were equivalent to 1 modulo 6, we see that
2 is not invertible modulo 6.

It was quite a tedious process to exhaustively show that 2 is not invert-
ible modulo 6. The following theorem gives a much easier-to-use criterion for
invertibility.

56 marcel goh

Theorem 49. Let a, n ∈ Z with n ≥ 2. Then

i) a is invertible modulo n if and only if gcd(a, n) = 1; and

ii) if a is invertible, then there is a unique integer b ∈ [0, n−1] such that ab ≡ 1
(mod n). Namely, if

1 = sa+ tn,

then we can set b = s % n.

Proof. The proof of (i) is a fairly simple corollary of Bézout’s theorem. f a is
invertible, then ab ≡ 1 (mod n), so there exists k ∈ Z such that 1 − ab = kn.
Rearranging this, we have 1 = ab + kn, and by Bézout’s theorem (specifically,
the final statement of Theorem 36, this implies that gcd(a, n) = 1. On the other
hand, if gcd(a, n) = 1, then there exists k ∈ Z such that 1 = ab + kn. This
means that 1− ab = kn, so ab ≡ 1 (mod n).

For part (ii), suppose that s, t ∈ Z are such that 1 = sa + tn. Then taking
this equation modulo n, we have

1 = sa+ tn ≡n sa+ 0t ≡n sa.

Letting b = s % n, we have 1 = ba, since s and b belong to the same equivalence
class modulo n, and b is an integer in [0, n− 1] by the division algorithm. This
proves existence of such a b. To show uniqueness, we suppose that b and c
are both elements of [0, n − 1] with ab ≡ 1 (mod n) and ac ≡ 1 (mod n). By
Proposition 48, we have b ≡ c (mod n); in other words, n | b − c. But since
b, c ∈ [0, n− 1], we have b− c ∈ [−n+ 1, n− 1], and the only divisor of n in this
range is 0. Hence b− c = 0 and we conclude that b = c.

We can use this theorem to systematically find inverses of integers modulo
other integers. For instance, suppose we want to find the inverse of 17 modulo
20. First we find gcd(20, 17) by Euclid’s algorithm:

20 = 1 · 17 + 3

17 = 5 · 3 + 2

3 = 1 · 2 + 1

1 = 1 · 1 + 0

The fact that gcd(20, 17) = 1 tells us that 17 indeed has an inverse. Now we go
backwards to express 1 as an integer linear combination of 20 and 17:

1 = 3− 1 · 2
= 3− (17− 5 · 3)
= −17 + 6 · 3
= −17 + 6(20− 17)

= 6 · 20− 7 · 17

math fall 57

So the inverse of 17 modulo 20 is −7 ≡20 13. (We can verify that

17 · 13 ≡ (−3)(−7) ≡ 21 ≡ 1 (mod 20).

As a trick for computations, use the range −n/2 to n/2 instead of 0 to n− 1 to
keep the numbers a bit smaller. It might help you avoid errors.)

Let’s find the full list of invertible integers modulo 20, as well as their in-
verses. First, we list the integers in the range [0, 19] that are relatively prime
with 20:

1, 3, 7, 9, 11, 13, 17, 19

If some number is in this list, then its inverse must also be in this list (since
inverses to a given element must themselves be invertible). The elements 1 and
19 are their own inverses, since 1 · 1 = 1 and 19 · 19 ≡20 (−1)(−1) = 1. We
already saw above that 13 and 17 are inverses to each other. That leaves 3, 7, 9,
and 11. First we see that 3 · 7 = 21 ≡20 1, so 3 and 7 are inverses to each other.
Then we note that 9 ·9 = 81 ≡20 1, so 9 is its own inverse, leaving us to conclude
that 11 must also be its own inverse as well—either by the fact that we’ve ruled
out all other possibilities, or by the computation

11 · 11 ≡20 (−9)(−9) = 81 ≡20 1.

We now investigate what happens in the particular case where we the mod-
ulus n is prime. In this situation we have the following proposition.

Proposition 50. Let p be prime. Then

i) every x ∈ Z with x 6≡ 0 (mod p) is invertible modulo p; and

ii) for all a, b ∈ Z with ab ≡ 0 (mod p) one has a ≡ 0 (mod p) or b ≡ 0 (mod p).

Proof. Since p only has factors 1 and p, gcd(x, p) must either be 1 or p. But the
condition x 6≡ 0 (mod p) implies that p does not divide x. Hence gcd(x, p) = 1,
proving part (i).

For part (ii), assume that ab ≡ 0 (mod p), so p | ab. But p is prime, so by
Theorem 39, either p | a or p | b. In the first case we have a ≡ 0 (mod p), and in
the second case, b ≡ 0 (mod p).

.x Solving congruences modulo n. Suppose we want to solve for all integers x
satisfying x2 ≡ x (mod n), first for n = 6, then for n = 7.

For the case where n = 6, it suffices to consider x ∈ {0, 1, . . . , n − 1}, since
if x2 ≡ x (mod n) and x ≡ a (mod n), then a2 ≡ a (mod n). So we simply
try all x ∈ {0, 1, . . . , 5}. We have 02 = 0, 12 = 1, 22 = 4 6≡6 2, 32 = 9 ≡6 3,
42 = 16 ≡6 4, and 52 ≡2 (−1)2 = 1 6≡6 5. We conclude that 0, 1, 3, and 4 are
solutions to this congruence modulo 6, and more broadly, any integer y of the
form

y = x+ 6k

where k ∈ Z and x ∈ {0, 1, 3, 4}, is a solution x2 ≡ x (mod 6).

58 marcel goh

Now we tackle the case where n = 7. In fact, the solution would be no
different should n be any other prime. First we subtract x from both sides,
obtaining the congruence x2 − x ≡ 0 (mod 7), then we factorise the left side to
get x(x − 1) ≡ 0 (mod 7). Now by the previous proposition, since 7 is prime if
x(x− 1) ≡ 0 (mod 7), we must have either x ≡ 0 (mod 7) or x− 1 ≡ 0 (mod 7),
so the only solutions are x ≡7 0 and x ≡7 1 (and anything in their equivalence
classes).

Replacing 7 with any other prime p in the above paragraph yields a proof
of the following proposition.

Proposition 51. Let p be a prime. Then a2 ≡ a (mod p) if and only if a is
either congruent to 0 or 1 modulo p.

Here is a similar proposition.

Proposition 52. Let p be a prime and let a 6≡ 0 (mod p) (so that a is invertible.
Then a ≡ a−1 (mod p) if and only if a is either congruent to 1 or −1 modulo p.

Proof. If a = 1 or a = −1, then a2 = 1, so a2 ≡ 1, and multiplying by a−1 on
both sides, we have a ≡ a−1 (mod p).

Now suppose that a ≡ a−1 (mod p). Multiplying by a on both sides, we get
a2 ≡ 1 (mod p); then, subtracting 1 from both sides and factoring the resulting
polynomial, we get

(a+ 1)(a− 1) ≡ 0 (mod p).

This implies that either a + 1 ≡ 0 (mod p) or a − 1 ≡ 0 (mod p). In the first
case, a ≡p −1, and in the second case, a ≡p 1.

We finish off this section with an important theorem, first stated by Pierre
de Fermat in 1640. He did not supply a proof; the first published proof of this
theorem was given by Leonhard Euler in 1736.

Theorem 53 (Fermat’s little theorem). Let a and p be integers with p prime.
If a 6≡ 0 (mod p), then ap−1 ≡ 1 (mod p).

Before proving this theorem, we first state and prove a lemma. Recall that
we define the factorial of n ∈ N to be the product n! = 1 · 2 · · · (n− 1)n.

Lemma 54. For all prime numbers p, the integer (p − 1)! is congruent to −1
modulo p.

Proof. If p = 2, we have (p − 1)! = 1 ≡ −1 (mod 2), and if p = 3, then
(p− 1)! = 2 ≡ −1 (mod 3).

For the rest of the proof, assume that p ≥ 5. By Proposition 52, each
element in the set S = {2, 3, . . . , p− 3, p− 2} is not its own inverse modulo p, so
for each element s ∈ S, there is some other element s′ ∈ S with s′ 6= s such that
ss′ ≡ 1 (mod p). This means that

2 · 3 · · · (p− 3)(p− 2) ≡ 1 (mod p).

math fall 59

From this, we see that

(p−1)! = 1·2 . . . (p−2)(p−1) =
(
2·3 · · · (p−3)(p−2)

)
(p−1) ≡p (p−1) ≡p −1.

We are now able to prove Fermat’s little theorem.

Proof of Theorem 53. Since a 6≡ 0 (mod p), it is invertible modulo p by Propo-
sition 50. Denote its inverse by a−1. Let G = (Z/pZ) \ {0} for short. Define a
function f : G→ G by letting f(x) = a · x, where we consider the result modulo
p (and hence the result is an element of Z/pZ). This function is well defined:
since a and x are both not zero modulo p, their product will be an element of
G. If f(x1) = f(x2), then

a · x1 ≡ a · x2 (mod p),

so multiplying both sides by a−1, we have x1 ≡ x2 (mod p). This proves that f
is injective. Now let y ∈ G. We want to find x with f(x) ≡ y (mod p). To do
so, simply set x ≡ a−1y (mod p). Then

f(x) = f(a−1y) = a(a−1y) ≡ y (mod p).

This proves that f is surjective, and hence bijective.
The bijection f shows that the set

{
a, 2a, . . . , (p− 2)a, (p− 1)a

}
,

taken as a subset of Z/pZ (i.e., we take each element modulo p, in the range
[0, . . . p− 1]), is exactly the same as the set

{1, 2, . . . , p− 2, p− 1},

just that the order of elements might be permuted. Hence we have

a(2a) · · ·
(
(p− 2)a

)(
(p− 1)a

)
≡ (p− 1)! (mod p).

Combining all the a factors on the left-hand side, we get

ap−1(p− 1)! ≡ (p− 1)! (mod p).

But by the previous lemma, −1 is the inverse of (p−1)! modulo p, so multiplying
both sides of this congruence by −1, we get

ap−1 ≡ 1 (mod p),

which is what we wanted to show.

As a matter of interest, the intermediary lemma we proved is one direction
of Wilson’s theorem, proved by John Wilson in 1770.

60 marcel goh

Theorem 55 (Wilson’s theorem). For all integers n ≥ 2, the congruence

(n− 1)! ≡ −1 (mod n)

holds if and only if n is prime.

Proof. We already proved the “if” direction earlier, as Lemma 54. We leave the
“only if” direction of the proof as an exercise for the reader.

Tout nombre premier mesure infalliblement

une des puissances - 1 de quelque progression que ce soit,

& l’exposant de ladite puissance est soûs-multiple du nombre premier donné - 1.

Et aprés qu’on a trouvé la premiere puissance qui satisfait à la question,

toutes celles dont les exposans sont multiples de l’exposant de la premiere

satisfont de méme à la question.

— PIERRE DE FERMAT, in a letter to Bernard Frénicle de Bessy (1640)

11. Applications of number theory

In this section we present a potpourri of interesting ways number theory is ap-
plied to make your life better.

ISBN book identifiers. Every published book has an ISBN code that serves
as its unique identifier. This code is 10 digits long for books published before
2007, but three new digits have been added for books published after 2007. In
this section we’ll deal with the simpler case of 10 digits.

What we want to do is to bake some redundancy into the codes, so that if a
single digit is typed wrong, a computer will be able to tell the user that the code
is invalid. This allows the user to correct their mistake. The way we do this, in
a ten-digit code d10d9d8 · · · d2d1, is to have only the first nine digits encode the
book. The last digit is a check digit, chosen so that

10∑

i=1

idi ≡ 0 (mod 11). ()

In other words,

d1 ≡ −
10∑

i=2

idi (mod 11).

If d1 needs to equal 10, we use the symbol ‘X’.
How does this solve our problem? Well, if a hapless person takes a valid

ISBN code and mangles it by either getting one digit wrong, or by swapping two
adjacent digits, the result is an invalid ISBN code, and the computer will be able
to flag it. We formalise this statement as the following theorem.

math fall 61

Theorem 56. Let d10d9d8 · · · d2d1 be a valid ISBN code; that is, a code that
satisfies (). Then any code obtained by either

i) changing exactly one digit di, for some 1 ≤ i ≤ 10, or

ii) swapping distinct adjacent digits di and di−1, for some 2 ≤ i ≤ 10,

is not a valid ISBN codes (it does not satisfy ()).

Proof. First we prove (i). Suppose that c10c9c8 · · · c2c1 is a code that is equal to
d10d9d8 · · · d2d1 except at one place 1 ≤ j ≤ 10. So cj 6= dj , but for all 1 ≤ i ≤ 10
with i 6= j, we have ci = di. Then

10∑

i=1

ici ≡11

10∑

i=1

ici − 0

≡11

10∑

i=1

ici −
10∑

i=1

idi

=
10∑

i=1

i(ci − di)

= j(cj − dj).

But j ∈ {1, . . . , 10} and (cj − dj) ∈ [−10, 10]. So neither j nor cj − dj are
congruent to 0 modulo 11. Since 11 is prime, their product cannot be congruent
to 0 modulo 11. We conclude that

∑10
i=1 ici 6≡ 0 (mod 1)1; i.e., this is not a valid

ISBN code.
To prove part (ii), suppose that c10c9c8 · · · c2c1 is a code that is equal to

d10d9d8 · · · d2d1, except that for some 2 ≤ j ≤ 10, we have cj = dj−1 and cj−1 =
dj (the adjacent digits are swapped). Furthermore, assume that dj 6= dj−1, since
swapping adjacent digits that are the same doesn’t do anything to the code.
Then

10∑

i=1

ici ≡11

10∑

i=1

ici − 0

≡11

10∑

i=1

ici −
10∑

i=1

idi

=
10∑

i=1

i(ci − di)

= (j − 1)cj−1 + jcj − (j − 1)dj−1 − jdj

= (j − 1)dj + jdj−1 − (j − 1)dj−1 − jdj

= dj−1 − dj .

But since dj−1 and dj are both in the range {0, . . . , 10}, their difference is in the
range [−10, 10], and we assumed that dj−1 6= dj , so this difference is not zero.
We conclude that dj−1 − dj 6≡ 0 (mod 11), so the code is not valid.

62 marcel goh

Something similar is done with credit card numbers, though we don’t take
digits modulo 11 (or else we’d have to use the digit ’X’, which is cumbersome).
Instead, a slightly different method called Luhn’s algorithm is used. The calcu-
lation used to find the check digit is a bit different (let’s not get into it), but
the result is that we can still detect single-digit errors, and we can detect all
swapping errors except for the transposition 09↔ 90.

Divisibility tests. In grade school you might have learned the following divis-
iblity rule: To tell if a number is divisible by 3, you sum up all of its digits. If
this is a multiple of 3, then the original number was a multiple of 3, and if not,
then the original number wasn’t. The same holds with 3 replaced by 9.

Using the number theory we’ve learned, we are now able to prove this fact.

Proposition 57. Suppose that n ∈ N is written in base-10 digits as

n = dkdk−1dk−2 · · · d2d1d0,

for some integer k ≥ 0 and di ∈ {0, . . . , 9} for 0 ≤ i ≤ k. Then n is divisible by
3 if and only if

k∑

i=0

di

is also divisible by 3.

Proof. Since 10 ≡ 1 (mod 3), any power of 10 is also congruent to 1 modulo 3.
So we have

n =

k∑

i=0

di10
i ≡3

k∑

i=0

di,

and we see that n is divisible by 3 if and only if the sum on the right-hand side
is.

This works with 3 replaced by 9 since we also have 10 ≡ 1 (mod 9).

Computing large powers modulo n. The next application is not a precise
mathemathical statement; rather, it’s an observation that Fermat’s little theorem
can allow us to compute what large powers are modulo a prime without having
to compute the number itself. We’ll illustrate this by two examples.

First we compute 25134 (mod 11). We begin by noting that

25 ≡ 3 (mod 11),

so what we really want is 3134 (mod 11). By Fermat’s little theorem, 310 ≡ 1
(mod 11), so we may cast out multiples of 10 from 134 to arrive at the easy
computation

3134 ≡ 310·13+4 ≡ (310)13 · 34 ≡ 32 · 32 ≡ 9 · 9 ≡ (−2)(−2) ≡ 4 (mod 11).

math fall 63

Now let’s try 25134 (mod 14). Since 14 is not prime, we can no longer use
Fermat’s little theorem. The trick we shall use is to square 25 repeatedly. First
note that 25 ≡ −3 (mod 14), so 252 ≡ 9 (mod 14). Then, squaring again, we
get

254 ≡ 92 ≡ (−5)2 ≡ 25 ≡ −3 (mod 14).

This means that repeated squaring of 25 cycles between −3 and 9 modulo 14, so
we immediately have

258 ≡ 9, 2516 ≡ −3, 2532 ≡ 9, 2564 ≡ −3,

and
25128 ≡ 9

modulo 14. Now writing the exponent 134 as a sum of powers of two allows us
to conclude that

25134 = 25128+4+2 = 25128 · 254 · 252 ≡ 9 · (−3) · 9 ≡ (−3)(−3) ≡ 9 (mod 14).

Fermat’s primality test. Fermat’s little theorem says that if n is prime, then
for all integers a with a 6≡ 0 (mod n) one has an−1 ≡ 1 (mod n). The contrapos-
itive of this statement is that if there is some integer a with a 6≡ 0 (mod n) and
an−1 6≡ 1 (mod n), then n is not prime. This leads us to the following algorithm
that can (usually) tell us when a number is not prime.

Algorithm F (Fermat’s primality test). Given an integer n ≥ 4, this algorithm
will attempt to declare that n is not prime. If the algorithm fails to do so, then
the test is inconclusive (n may either be prime or not).

F1. [Initialise.] Set a ← 2. (We can skip the step a = 1 since an−1 will always
equal 1 in this case.)

F2. [Compute power.] Set b← an−1 % n. (So 0 ≤ b < n.)

F3. [Not prime?] If b 6= 1, output “Not prime,” and terminate the algorithm.

F4. [Loop?] Set a← a+ 1. If a = n, output “Inconclusive,” and terminate the
algorithm. Otherwise, go to step F2.

.x Let’s see a couple of examples. Suppose we want to find out if 9 is prime or
not (we both know it isn’t but play along for a second). In the very first step
loop, when a = 2, we have

29−1 = 28 = (24)2 = 162 ≡ (−2)2 = 4 (mod 9),

so since 4 6≡ 1 (mod 9), we conclude right away that 9 is not prime.
A harder one. Is 341 prime? We start with a = 2. Noting that 3·341 = 1023,

we have
2340 = (210)34 = 102434 ≡ 134 ≡ 1 (mod 341),

64 marcel goh

so the test is inconclusive after the first loop. Fine. If we try a = 3 next, we
will find that 3340 ≡ 56 6≡ 1 (mod 341), so we conclude that 341 is not prime.
(Those wishing to practise computing large powers modulo n might like to verify
the fact that 3340 ≡ 56 (mod 341). Use the squaring trick.)

If n causes Algorithm F to output “Inconclusive,” it is very likely that n
is prime. However, there are rare cases of composite numbers n that cause
Algorithm F to output “Inconclusive.” These are called Carmichael numbers.
The smallest one is 561.

Vernam’s one-time pad. Alice and Bob want to exchange secret messages
over a public channel without anyone being able to decipher them. A message
can be encoded as a binary string M . Here is one way that Alice and Bob can
securely send encrypted messages to each other. It is called Vernam’s one-time
pad, named for G. Vernam, an AT&T engineer who patented the method in 1917.

First, they need to meet in person and generate a long sequence of random
bits. (How can one generate random numbers? This is an interesting quasi-
philosophical question.) Each of them keeps a copy of this sequence, call it
S.

Now suppose Alice and Bob separate and Alice wants to send the message
M = 0110 to Bob. Of course, she shouldn’t send this string directly, as it could
be intercepted by foes. She needs to use the sequence S. Suppose the first four
bits of S are 1101. To encrypt her message, Alice adds each bit of M to the
corresponding bit of S, modulo 2. We will denote this by the ⊕ operation. The
encrypted message is M ′ = 0110⊕ 1101 = 1011. She sends it to Bob.

Bob receives the string M ′ = 1011. To decode it and recover the message
M , Bob simply has to perform the ⊕ operation using the (same) first four bits
of S that Alice used to encode the message in the first place. Indeed, we see
that 1101⊕1101 = 0110 = M . The reason that this works is that for any binary
string S, we have S⊕S = 0, so performing the ⊕ operation twice always returns
the original string.

If they want to send more messages, they simply discard the bits they used
before and continue using the next few bits of S.

The advantage to this approach is that an adversarial third-party, reading
M ’, gains no information about the original string M , provided they do not
know the sequence S. In other words, it is entirely secure. The disadvantages of
Vernam’s one-time pad are that Alice and Bob must meet in person beforehand,
they need to find a way to generate random bits securely, and they need to
periodically repeat this process to replenish the bits once they run out.

The RSA cryptosystem. Now we move on to a more sophisticated method of
encrypting and decrypting messages. It is called the RSA cryptosystem, named
for R. Rivest, A. Shamir, and L. Adleman, who described the algorithm in 1977.

Here’s the scenario. Alice wants people to be able to send her messages such
that only she can decode them. To do so, she needs to create a public key, which
allows people to encrypt their messages before sending them to her, and then a

math fall 65

private key that will allow her to decrypt messages. (Only she knows the private
key.)

To set things up, Alice needs two large primes, call them p and q. (Something
like 200 bits is sufficient.) Then she computes n = pq. Now, she picks some
integer k with

gcd
(
k, (p− 1)(q − 1)

)
= 1.

By Theorem 49, there is some integer s such that ks ≡ 1 (mod (p − 1)(q − 1)).
Alice publishes the integer n and the public key k. The private key is s; this she
keeps to herself.

Now Bob wants to send a secret message M to Alice. Considering M as
an integer (in binary), a requirement for the algorithm to work is M < n. Bob
computes M = Mk % n and sends M to A. (We have 0 ≤M < n by the division
algorithm.)

Alice receives M . She computes M
s
. It turns out that this is M . To prove

this, we need a lemma.

Lemma 58. Let a and b be integers.

i) For all positive integers m and n, if a ≡ b (mod mn), then a ≡ b (mod m)
and a ≡ b (mod n).

In the case that m and n are different primes, the converse holds; that is, the
following holds.

ii) For all primes p and q with p 6= q, if a ≡ b (mod p) and a ≡ b (mod q), then
a ≡ b (mod pq).

Proof. Assume that a ≡ b (mod mn), so there exists k ∈ Z such that a−b = kmn.
This means that a − b ≡ 0 (mod m) and a − b ≡ 0 (mod n), so a ≡ b (mod m)
and a ≡ b (mod n).

To prove (ii), suppose that there exist k, l ∈ Z such that a − b = kp and
a− b = lq. We have kp = lq, so p | lq. Because p is prime, p must divide either
l or q. But q is prime as well, so the only divisors of q are 1 and q. Hence p | l,
and we may write l = rp for some r ∈ Z. So we have

a− b = lq = rpq,

implying that a− b ≡ 0 (mod pq); that is, a ≡ b (mod pq).

Now we shall prove that the encrypted message M = Mk can be decrypted
into the original message.

Theorem 59 (RSA encryption). Let p and q be distinct primes and let n = pq.
Let k and s be such that ks ≡ 1 (mod n). Then for all integers 0 ≤ M < n,
(Mk)s ≡M (mod n).

Proof. Without loss of generality, we can take k and s both positive. From ks ≡ 1
(mod (p−1)(q−1)), we know there is an integer l such that ks−1 = l(p−1)(q−1).

66 marcel goh

Since k, s > 0, this identity means that l > 0 as well. Now, since n = pq, we
have

(Mk)s ≡Mks ≡M1+l(p−1)(q−1) ≡M(Mp−1)l(q−1) (mod pq).

By part (i) of the previous lemma, this means we have the same congruence
modulo p; i.e.,

(Mk)s ≡M(Mp−1)l(q−1) (mod p),

and by Fermat’s little theoremMp−1 ≡ 1 for allM 6≡ 0 (mod p), so this simplifies
to

(Mk)s ≡p

{

M, if M 6≡ 0 (mod p);
0, otherwise

≡p M.

Mutatis mutandis (by the roles of p and q in the above), we have (Mk)s ≡q M
as well, so part (ii) of the previous lemma can now be applied to give

(Mk)s ≡M (mod pq).

Here is an example of the RSA algorithm in action. Alice sets p = 3 and
q = 11, so that n = 33. This means that (p − 1)(q − 1) = 2 · 10 = 20. Using
k = 7 (which we can do since gcd(7, 20) = 1, we have s = 3, since 3 · 7 = 21 ≡ 1
(mod 20). Alice publishes the integer n = 33 as well as the public key k = 7.
She keeps the number s = 3 private.

The possible messages M one can send to Alice are 0, 1, . . . , 32, since we
need 0 ≤ M < n. Suppose Bob wants to send the message 00010 to Alice; that
is, we have M = 2. Bob computes

Mk = 27 = 25 · 22 = 32 · 4 ≡ (−1) · 4 ≡ 29 (mod 33),

and sends Alice M = 29.
Now Alice computes

M
s
= 293 ≡ (−4)3 = −64 ≡ −64 + 66 = 2 (mod 33)

and recovers the original message M = 2.
Now imagine that there is a third person, Charlie, who wants to thwart

Alice and Bob. The integer n and the public key n are known to all, including
Charlie. If he wants to decrypt Bob’s message, all Charlie needs to know is the
the private key s. In this case, since n is very small, the Adversary can simply
factor 33 = 3 · 11 to find out that (p − 1)(q − 1) = 20, and then use Euclid’s
Algorithm to find the inverse of 7 modulo 20, and he will be able to decrypt all
messages between Alice and Bob.

In real life, RSA is implemented using very large primes p and q. This
makes it difficult, but not impossible, to break the encryption. To put things in
perspective, it took a team of researchers 900 core-years of computing time to
factorise the 240-digit (795-bit) modulus n that is used in RSA-240 encryption.

math fall 67

These researchers estimated that increasing the number of bits to 1024 would
make their factorisation program take 500 times as long to crack the encryption.

However, this does not mean there doesn’t exist a fast algorithm for fac-
torising integers. We just haven’t found one yet (or if people have, they are
keeping the algorithm to themselves). Most computer scientists believe that this
is impossible though. It is conjectured that integer factorisation is a difficult
problem—that is, there is no algorithm to factorise a b-bit integer in time poly-
nomial in b. Until this conjecture is proved, all of the data we rely on encryption
to protect could theoretically be in jeopardy.

III. GRAPH THEORY

Quamobrem, cum nuper problematis cuiusdam mentio esset facta,

quod quidem ad geometriam pertinere videbatur,

at ita erat comparatum, ut neque determinationem quantitatum requieret,

neque solutionem calculi quantitatum ope admitteret,

id ad geometriam situs referre haud dubitavi:

praesertim quod in eius solutione solus situs in considerationem veniat,

calculus vero nullius prorsus sit usus.

— LEONHARD EULER “Solutio problematis ad geometriam situs pertinentis” (1741)

12. Definitions and basic notions

A graph is a pair G = (V,E) where V is a nonempty set and

E ⊆
{
{u, v} : u, v ∈ V, u 6= v

}
.

The graph G is said to be finite if and only if V is finite. The elements of V are
called vertices and the elements of E are called edges. If e = {u, v} ∈ E, we say
that u and v are adjacent, and e is incident on u and v. For brevity, we often
write uv instead of {u, v}. Note that an edge is defined to be a 2-element set,
not an ordered pair, so uv = vu.

Let’s start with a small example. Let V = {1, 2, 3, 4} and

E = {12, 13, 14, 24}.

We can draw the graph G = (V,E) as follows:

1 2

3 4

Instead of listing out all the vertices, we can define graphs by setting condi-
tions for when a pair of vertices should be connected by an edge. For instance,
let G = (V,E) be the graph with V = Z/5Z and, for a, b ∈ V with a 6= b, we
put ab ∈ E if and only if

a+ b ≡ 1 (mod 5) or a+ b ≡ 3 (mod 5).

Here is a drawing of G:

5

43

2

1

Turns out this graph was simpler than it might have seemed at first glance.
Here is an alternate drawing of G:

4 2 1 5 3

70 marcel goh

Note that when we refer to G, we are talking about a set of vertices and
edges, not any particular drawing! There are infinitely many valid drawings of
any graph.

Suppose G = (V,E) has a finite number of vertices. Then we can put the
elements of V in bijection with {1, . . . , n}. Without loss of generality, we can
simply assume that {1, . . . , n} is the vertex set of G. The adjacency matrix of G
is then defined to be the symmetric n× n matrix obtained by setting

Aij =

{
1, if ij ∈ E,
0, otherwise.

For instance, the adjacency matrix of the graph on Z/5Z defined earlier is

A =

0 1 0 0 1
1 0 0 1 0
0 0 0 0 1
0 1 0 0 0
1 0 1 0 0

.

We now define certain important families of graphs. For any integer n ≥ 1,
we define the complete graphKn to be the graph on n vertices with every possible
edge present. Small examples are illustrated in Fig. 2.

Fig. 2. Complete graphs Kn for small n.

.x For an integer n ≥ 1, we define the Hamming cube or hypercube to be the
graph Qn whose vertex set is {0, 1}n, the set of all binary strings of length n,
and whose edge set is the exactly the set of pairs of strings that differ by exactly
one bit. Small examples are illustrated in Fig. 3. (As an exercise, try to figure
out which strings correspond to which vertices!)

Fig. 3. Hypercubes Qn for small n.

math fall 71

Degrees and k-regularity. The neighbours of a vertex v are all u ∈ V such
that uv ∈ E. The degree of a vertex v, denoted by deg(v), is the number of
neighbours that v has. A graph is said to be k-regular for some k ∈ N if every
v ∈ V has degree k. For example, let Cn denote the graph on V = Z/nZ where
we connect a ∈ V and b ∈ V if and only if a − b ≡ 1 (mod n) or a − b ≡ −1
(mod n). Every vertex a has exactly two neighbours, namely, the congruence
classes of a−1 and a+1 modulo n. So Cn is 2-regular for all n. In fact, complete
graphs and hypercubes are also regular, for in Kn, each vertex is connected to
each of the n − 1 other vertices, and in Qn, each string is connected to the n
other strings obtained by flipping each of its bits.

The following theorem relates vertex degrees to the number of edges.

Theorem 60. Let G = (V,E) be a finite graph. Then

∑

v∈V

deg(v) = 2|E|.

Proof. Consider each edge e = uv ∈ E. It contributes +2 to the right-hand side.
On the left-hand side, it contributes +1 to the degree deg(u) of u, and +1 to the
degree deg(v) of v.

The proof of this theorem is an excellent example of a proof by double count-
ing, where we have proved an identity by showing that both sides are different
ways of counting the same thing. This theorem has the following corollary.

Corollary 61 (Handshaking lemma). In every finite simple graph, the number
of vertices having odd degree is even.

Proof. We partition V = Vo ∪ Ve, where Vo comprises all vertices of odd degree
and Ve comprises all vertices of even degree. By the previous theorem, we have

2|E| =
∑

v∈V

deg(v) =
∑

v∈Vo

deg(v) +
∑

v∈Ve

deg(v).

Taking this whole identity modulo 2, we have

0 ≡
∑

v∈Vo

1 +
∑

v∈Ve

0 (mod 2).

Hence
|Vo| =

∑

v∈Vo

1 ≡ 0 (mod 2),

which is what we wanted.

This proposition is often called the handshaking lemma (sometimes this
is also used to refer to the preceding theorem), since it implies that at any
gathering, the number of people who shake hands with an odd number of people
is even. From Theorem 60 we also able to derive a corollary that counts the
number of edges in k-regular graphs.

72 marcel goh

Corollary 62. Let G = (V,E) be k-regular. Then

|E| = k|V |
2

.

Proof. By Theorem 60, we have

2|E| =
∑

v∈V

deg(v),

but deg(v) = k for all v ∈ V by k-regularity. Hence

2|E| =
∑

v∈V

k = k|V |,

and the result follows upon rearranging.

Walks, paths, and cycles. A walk in G = (V,E) is a sequence σ of vertices

σ = (v0, v1, . . . , vn)

such that vivi+1 ∈ E for all 0 ≤ i ≤ n − 1. The endpoints of σ are v0 and vn,
and the length of σ, denoted |σ|, is the number of edges traversed, namely, n.
The walk is said to be closed if v0 = vn and open otherwise. A walk is called a
path if no vertex is repeated.

Theorem 63. Let G = (V,E) be a graph. If u and v are vertices such that
there exists a walk from u to v, then there exists a path from u to v.

Proof. We perform a minimality argument. Let σ = (v0, v1, . . . , vn) be a walk
from u to v (so u = v0 and v = vn) of shortest length. We claim that σ is in
fact a path. Indeed, suppose for a contradiction that it is not a path; then there
is some repeated vertex, so there exist i, j ∈ {0, 1, . . . , n} such that i < j and
vi = vj . Hence there is no need to visit any of the vertices between vi and vj in
σ, since vi = vj is connected to vj+1. Concretely, consider the walk

σ′ = (v0, v1, . . . , vi, vj+1, . . . , vn).

Note that |σ′| = |σ| − (j − i), and j − i > 0, so σ′ is a shorter walk from u to
v. But this contradicts our choice of σ as a walk from u to v of shortest length.
We conclude that σ is a path.

A cycle is a walk σ = (v0, v1, . . . , vn) of length at least 3 with v0 = vn and
no vertex repeated except v0 = vn.

math fall 73

Proposition 64. Let G = (V,E). If G contains a closed walk of odd length,
then it contains a cycle of odd length.

Proof. The idea is similar to the proof of the previous theorem. We perform a
minimality argument. Let σ = (v0, v1, . . . , vn) be an odd-length closed walk in
G, and choose this walk to have minimal odd length (i.e, any shorter walk has
even length). We shall prove that σ is a cycle.

For a contradiction, suppose that σ is not a cycle, so that there exist indices
i and j with i < j such that vi = vj . Consider the two closed walks

σ1 = (v0, v1, . . . , vi, vj+1, . . . , vn)

and
σ2 = (vi, vi+1, . . . , vj).

Both are shorter than σ, so by the minimality of σ, |σ1| and |σ2| are even. But
this implies that |σ| = |σ1| + |σ2| is even. This contradicts the hypothesis that
|σ| is odd.

We conclude that σ is a cycle.

