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Abstract. The vast majority of software contains bugs, and various methods have been
devised to find bugs and prevent their creation. Formalising programming languages and
proving theorems about them is one way of verifying the soundness of programs. Proof
assistants provide an interactive medium for constructing such proofs and they are widely
used in programming-language research as well as other domains.

Harpoon is a proof assistant built upon the logical framework of Beluga, a functional
programming language. User-supplied tactics as well as automated proof-search techniques
are applied directly to the internal syntax of a source program, gradually refining subgoals
until a correct proof is found. This paper describes an algorithm for typechecking Harpoon
proof scripts. In addition, rules are given for the translation of Harpoon proof scripts to
equivalent Beluga programs. These typechecking and translation phases act as a layer of
verification in the development of a proof.

Note. This report was written as part of a COMP 400 Honours Project in Computer
Science in Fall 2019. The author is indebted to Jacob Errington and Prof. Brigitte Pientka
for their patience and extensive guidance.

1. INTRODUCTION

For as long as we have trusted computers to perform our routine tasks, the gap between the specification of
programs and their actual implementation has contributed risk to software projects in nearly every industry.
Empirical evidence has suggested that the number of bugs in software is at least proportional to the number
of lines it contains [15], meaning that the average industrial codebase contains an immense amount of bugs.
Furthermore, once a bug is created, it can silently affect users for a long period of time before it is found.
For instance, the average lifespan of a bug in the Linux 2.6 kernel was found to be approximately 1.5 years
[19]. In general, users accept buggy software as a fact of life and are happy to use such software so long as
it largely meets their needs.

However, in certain sensitive contexts (e.g. network security), system faults are less likely to be dismissed
or ignored; and in the most critical of applications, error-laden code can be deadly. In March 2019, all Boeing
737 Max planes were grounded after bugs in the aircraft’s anti-stall software were linked to two fatal crashes
in the nine months prior [11]. Simply replacing faulty code with different but equally unverified code cannot
solve these problems. And as E. W. Dijkstra famously put it, “Program testing can be used to show the
presence of bugs, but never to show their absence!” The only way to ensure that a program behaves exactly
as specified is to prevent the actual creation of bugs and to prove that the resulting programs are indeed
bug-free. This can be done using a proof assistant whose engine is small and proven to work correctly. If we
model a source language in the language of a proof assistant, we can show that entire classes of bugs (e.g.
non-termination) cannot occur.

Consider the problem of compiling a structured programming language to assembly code. A compiler is a
program like any other, and it is easy to see why finding bugs in compilers is critical. After all, even the most
formally proven of source programs are of no use if one cannot trust the compiler to preserve the semantics
of the program when generating the corresponding assembly code. This concern is not without basis. A
three-year study by researchers at the University of Utah found more than 325 previously undetected bugs in

1



several C compilers using Csmith, a program that randomly generates C programs [24]. Even the widely-used
GCC and Clang compilers were found to crash unexpectedly and, more troublingly, silently create incorrect
assembly code for valid source programs. The only compiler that produced correct code was CompCert, a
verified C compiler written in Coq [13]. In fact, roughly six CPU-years were spent trying to find a bug in
CompCert, and outside of unproven parts of the compiler (e.g. the parser), not a single bug was found [24].

The CompCert project is evidence that proving properties about languages can result in robust software.
However, constructing proofs in a proof language can be difficult. One must keep in mind all available
assumptions and these do not always lead to the desired theorem statement in a straightforward manner.
For this reason, proof assistants have been designed as a way to construct proofs without needing to type
out the whole proof all at once. Instead, the user can enter a partial proof and the proof assistant will
sketch out the progress towards the goal statement, presenting the current proof environment and subgoal
in a human-readable manner. (In this way, “proof assistant” is an apt name.) The user can then select one
of a number of tactics to apply, which brings the proof one step closer to fruition.

In many conventional proof assistants (e.g. Coq), this interactive loop relies heavily on integration with
a text editor. Incomplete source programs are fed into the compiler and elaborated into internal syntax.
The proof assistant then identifies holes and user-invoked tactics are applied to an internal representation of
the partial program. The resulting proof object is then erased into ordinary code and the source program
is modified to reflect the outcome of the tactic. If the final goal is solved, then this loop terminates with
a program that accurately corresponds to the proof. The alternation between internal and external syntax
is clumsy and repeated modification of source code provides an opportunity for errors in implementation to
affect the validity of proofs.

Harpoon, an interactive proof assistant for Beluga, approaches the problem in a different fashion by
separating the proof construction from the external source program. Beluga code is parsed into Harpoon
internal syntax only once, and upon invocation of a tactic, only this internal representation is modified. All
of this happens in a standalone program, allowing the user to focus on the theorem at hand, instead of the
program that is generated as a by-product. When a correct proof is found, success is announced to the
user and a proof script that represents the generated proof is created. This script is an improvement over
the fragile alternative of simply recording user commands because it is an independent representation that
contains all the information required to reconstruct the proof or the program that corresponds to it.

The central problem that this paper addresses is this task of translating this proof script into its cor-
responding Beluga program. It is important not to generate code that contains type errors (otherwise no
improvement would have been made over the conventional methods previously outlined). A typechecking
algorithm must therefore be devised to ensure that only well-typed proofs are translated. The typechecking
will be done separately and only after it is complete should the Harpoon syntax tree be translated into Beluga
internal syntax, which can more safely be converted into source code.

2. GRAMMAR

Before we can begin developing the rules by which we will typecheck and translate Harpoon proofs, it is
worthwhile to acquaint ourselves with the structure of Beluga and Harpoon’s syntax as well as some of the
notation that will be used in the rules we devise.

2.1 Basic Notions and Notation

We write x : A to indicate that the term represented by the variable x is of type A. A context is a snoc-list
of such type declarations: it is either empty or consists of a type-declaration appended to another context.
When the validity of the type A is dependent on a context Ψ, we write (Ψ ` A) and this construction is
itself a kind of type, called a contextual type. The context ∆ consists of type declarations of the form X : U ,
where U is a contextual type.

Computational types come in three different forms. The first is a box-type [U ], where U is a contextual
type. The second is a function type, τ1 → τ2, where τ1 and τ2 are themselves computational types. Lastly,
a computational type can be of the form Π X : U. τ ′. (Because these are the only Π-types that concern us,

2



the square superscript will be omitted from now on.) This can be thought of as a universal quantification of
the variable X over all contextual types U . The context Γ is a list of computational type-declarations.

2.2. Beluga

Given a type τ and a Beluga term t, one can make the judgement

∆; Γ ` t⇐= τ In contexts ∆ and Γ, Beluga term t checks against type τ .

to typecheck the term t against τ . If t is a synthesisable term (e.g. a variable, an application), its type can
be looked up in the relevant context and the synthesis judgement

∆; Γ ` t =⇒ τ In contexts ∆ and Γ, Beluga term t synthesises type τ .

can be made. We introduce various Beluga terms and the rules by which Beluga terms are judged to be
well-typed. These are a subset of the rules found in [22].

First, we have mlam-expressions, which abstract over a metavariable:

∆, X : U ; Γ ` t⇐= τ

∆; Γ ` mlam X ⇒ t⇐= ΠX : U. τ
(bel-mlam)

The inference rule should be read as follows: If t ⇐= τ in contexts ∆, X : U and Γ, then mlam X ⇒ t ⇐=
ΠX : U. τ in contexts ∆ and Γ. Rules will be presented in this format throughout this paper. The rule for
fn-expressions, which abstract over an data-level variable, is very similar:

∆; Γ, x : τ1 ` t⇐= τ2
∆; Γ ` fn x⇒ t⇐= τ1 → τ2

(bel-fn)

To typecheck case-expressions, we assume the existence of a function coverage that returns a finite map
B from constructor names to quadruples (∆i; Γi; θi; pi). Here the contexts ∆i and Γi are newly generated
and θi is a refinement substitution that moves a type τ from ∆; Γ to ∆i; Γi. The last element pi of the tuple
is the pattern that appears in the actual Beluga term.

∆; Γ ` t =⇒ [U ] coverage(∆ ` U) = B
B(ci) = (∆i; Γi; θi; pi) ∆i; Γi ` ti ⇐= [[θi]]τ

∆; Γ ` case t of
−−−−−−−→
| pi ⇒ ti ⇐= τ

(bel-case)

Semantically, a let-expression is equivalent to a case-expression with only one case. It is convenient for our
purposes, however, to establish a separate inference rule for it.

∆; Γ ` t =⇒ τ ′′ ∆; Γ, x : τ ′′ ` t′ ⇐= τ

∆; Γ ` let x = t in t′ ⇐= τ
(bel-let)

Likewise, we have the following typechecking rule for the unboxing of a variable within a let-expression.

∆; Γ ` t =⇒ [Ψ ` A] ∆, X : [Ψ ` A]; Γ ` t′ ⇐= τ

∆; Γ ` let [Ψ ` X] = t in t′ ⇐= τ
(bel-letbox)

2.3. Harpoon

The proof language Harpoon consists of a small number of tactics. These are split into two mutually recursive
syntactic categories: proof descriptions P and directives D:
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i) A proof description P consists of a single directive or a tactic By I t as x; followed by another proof
P ′. Here the invocation I can be one of Lemma, IH, or Unboxing. The first two both invoke another
theorem (IH indicates that the invocation is inductive) and Unboxing extracts a contextual type from
a box-type and assigns it a metavariable name.

ii) To introduce all available assumptions, we use the directive intros{∆; Γ ` P}.

iii) The Split directive splits a term into its cases: Split t
−−−−−−→
Case ciHi.

iv) A subgoal is solved by means of the directive solve t.

The subset of Beluga and Harpoon’s grammars that concerns us can be summarised as follows:

LF Substitution σ ::= · | σ,M/x
LF Context Ψ ::= · | Ψ, x : A
LF Term M ::= λx : A.M |M1 M2 | X[σ]

LF Type A ::= Πx : A.B | a
−→
M

LF Kind K ::= type | Πx : A.K
Contextual Object C ::= Ψ | (Ψ `M)
Contextual Type U ::= ctx | (Ψ ` A)
Type τ ::= τ1 → τ2 | Π X : U. τ | [U ]
Beluga Term t ::= mlam X ⇒ t

| fn x⇒ t

| case x of
−−−−−−→
| pi ⇒ ti

| let x = t1 in t2
| let [Ψ ` X] = t1 in t2
| t1 t2 | t C | [C]
| . . .

Proof Desc. P ::= D | By I t as x;P
Invocation I ::= Lemma | IH | Unboxing
Hypothetical H ::= {∆; Γ ` P}
Directives D ::= introsH

| Split t
−−−−−−→
Case ciHi

| solve t

3. TYPECHECKING AND TRANSLATING HARPOON PROOFS

We now investigate how Harpoon proof descriptions P and directives D can be typechecked and subsequently
translated into well-typed Beluga terms t. First we must develop typing rules for Harpoon proofs, analogous
to the ones given in Section 2.2 for Beluga terms. Then we can devise additional rules to formalise the
translation step.

3.1 Typechecking

Harpoon proofs and directives are typed by the following judgements:

∆; Γ `P P ⇐= τ In contexts ∆ and Γ, Harpoon proof P checks against type τ .

∆; Γ `D D ⇐= τ In contexts ∆ and Γ, Harpoon directive D checks against type τ .

Typechecking proofs. These inference rules describe how proofs will be typechecked. The primary ob-
jective is to show that typechecking of Harpoon proofs is decidable. The broad strategy is to reduce the
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problem of typechecking proofs to typechecking Beluga terms, since we already know this typechecking to
be decidable.

When typechecking By, the case that the invocation I is an induction hypothesis or a lemma differs from
the case in which I unboxes a term. If I ∈ {IH, Lemma}, we have

∆; Γ ` t =⇒ τ ′ ∆; Γ, x : τ ′ `P P ⇐= τ

∆; Γ `P By I t as x;P ⇐= τ
(check-p-lemma)

So to verify that By I i as x;P checks against type τ , we need to verify that t synthesises type τ ′ and that
the proof P checks against type τ in contexts ∆ and Γ extended with x : τ ′. If By invokes an unboxing of a
Beluga term, then this rule changes slightly:

∆; Γ ` t =⇒ [Ψ ` A] ∆, X : (Ψ ` A); Γ `P P ⇐= τ

∆; Γ `P By Unboxing t as X;P ⇐= τ
(check-p-unbox)

Here we check that the term t synthesises a contextual type U . Then we may extend ∆ with X : U and show
that the proof P checks against type τ . This shows that an Unboxing expression is well-typed.

The last case arises when the proof P is a Harpoon directive D.

∆; Γ `D D ⇐= τ

∆; Γ `P D ⇐= τ
(check-p-dir)

Here we defer to the typechecking rules for Harpoon directives, which will be given next.

Typechecking directives. The simplest directive is solve t, which only requires that one typecheck the
Beluga term t.

∆; Γ ` t⇐= τ

∆; Γ `D solve t⇐= τ
(check-d-solve)

To typecheck the intros directive, we describe a recursive function unroll that allows us to peel assumptions
off a type one by one, until a box-type is found:

unroll(∆; U) = U

unroll(∆; ΠX : U. τ) = unroll(∆, X : U ; τ)

unroll(∆; τ1 → τ2) = unroll(∆; τ2)

Then the intros directive can be typechecked as follows:

unroll(∆; Γ; τ) = τ ′ ∆′; Γ′ `P P ⇐= τ ′

∆; Γ `D intros{∆′; Γ′ `P P} ⇐= τ
(check-d-intros)

The last case to consider is the one in which a term is split into its cases. Using the coverage function
described in Section 2.2, we can typecheck the case of each constructor ci by means of the following inference
rule.

∆; Γ ` t =⇒ [U ] coverage(∆ ` U) = B B(ci) = (∆i; Γi; θi; ) ∆i; Γi `P Pi ⇐= [[θi]]τ

∆; Γ `D split t
−−−−−−−−−−−−−−−−→
Case ci{∆i; Γi `P Pi} ⇐= τ

(check-d-split)

The entire split expression typechecks if and only if this is satisfied for all i.

3.2 Translation

After the Harpoon proof has been typechecked, it may be translated into its corresponding Beluga program.
The translation judgements are as follows:

∆; Γ `P P −⇀ t⇐= τ
In contexts ∆ and Γ, Harpoon proof P is translated into
Beluga term t, checking against type τ .
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∆; Γ `D D −⇀ t⇐= τ
In contexts ∆ and Γ, Harpoon directive D is translated
into Beluga term t, checking against type τ .

Translating proofs. Since the validity of induction hypotheses has already been verified during the type-
checking phase, the translation of a By tactic only splits into two cases now. If the invocation I ∈ {IH, Lemma},
the translation rule looks like this:

∆; Γ ` t =⇒ τ ′′ ∆; Γ, x : τ ′′ `P P −⇀ t′ ⇐= τ

∆; Γ `P By I t as x;P −⇀ let x = t in t′ ⇐= τ
(trans-p-lemma)

On the other hand, if an unboxing occurs, we have the rule

∆; Γ ` t =⇒ [Ψ ` A] ∆, X : (Ψ ` A); Γ `P P −⇀ t′ ⇐= τ

∆; Γ `P By Unboxing t as X;P −⇀ let [Ψ ` X] = t in t′ ⇐= τ
(trans-p-unbox)

If the proof P is a directive D, we translate the directive:

∆; Γ `D D −⇀ t⇐= τ

∆; Γ `P D −⇀ t⇐= τ
(trans-p-dir)

Translating directives. The base case is a solve t expression. Since this directive has already been type-
checked, it may simply be translated into the term t:

∆; Γ `D solve t −⇀ t⇐= τ
(trans-d-solve)

To give a translation rule for intros, we make use of the unroll function described previously. We also
observe that if we have unroll(∆; Γ; τ) = τ ′ and ∆′; Γ′ `P P −⇀ t′ ⇐= τ ′, then τ and τ ′ have the same
underlying box-type and we can easily produce a Beluga term t that checks against type τ . Algorithmically,
this by done by adding the appropriate mlam- and fn-expressions to t′. These are prepended in the opposite
order that that we peeled assumptions away from ∆ and Γ to produce τ ′ in the first place. Then we see that
t′ checked against type τ ′ only if t checks against τ . This reasoning justifies the following rule:

unroll(∆; Γ; τ) = τ ′ ∆′; Γ′ `P P −⇀ t′ ⇐= τ ′

∆′; Γ′ ` t′ ⇐= τ ′
....

∆; Γ ` t⇐= τ

∆; Γ `D intros{∆′; Γ′ `P P} −⇀ t⇐= τ
(trans-d-intros)

Finally, we translate split expressions given the same conditions previously described in the corresponding
typechecking rule. The same coverage function that provides the contexts ∆i and Γi and the refinement
substitution θi also provides the pattern pi for the branch of the Beluga case-expression.

∆; Γ ` t =⇒ [U ] coverage(∆ ` U) = B
B(ci) = (∆i; Γi; θi; pi) ∆i; Γi `P Pi −⇀ ti ⇐= [[θi]]τ

∆; Γ `D split t
−−−−−−−−−−−−−−−−→
Case ci{∆i; Γi `P Pi} −⇀ case t of

−−−−−−−→
| pi ⇒ ti ⇐= τ

(trans-d-split)

4. SOUNDNESS OF TRANSLATION

The goal of this section is to prove that if a Harpoon proof script has been successfully typechecked, then the
translation procedure only outputs Beluga programs that are well-typed. Concretely, we want to prove that
in contexts ∆ and Γ, if a Harpoon proof P is successfully typechecked against type τ and then translated into
some Beluga term t, then the term t checks against type τ in the same contexts. The analogous statement for
Harpoon directives will also be proved. Because the structures of Harpoon proofs and directives are mutually
recursive, both statements must be proved simultaneously. Using the notation we established for judgements,
the statement can be expressed as a theorem. The proof is by induction and examines each tactic separately.
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Theorem T. The following both hold:

i) If ∆; Γ `P P ⇐= τ and ∆; Γ `P P −⇀ t⇐= τ , then ∆; Γ ` t⇐= τ .

ii) If ∆; Γ `D D ⇐= τ and ∆; Γ `D D −⇀ t⇐= τ , then ∆; Γ ` t⇐= τ .

Proof. First we prove statement (i). Let

D ::= ∆; Γ `P P ⇐= τ

E ::= ∆; Γ `P P −⇀ t⇐= τ

We will do a case analysis on the three possibilities for P .
Case 1. If P invokes a By tactic on a lemma or induction hypothesis, then

D ::= ∆; Γ `P By I t as x;P ′ ⇐= τ

E ::= ∆; Γ `P By I t as x;P −⇀ let x = t in t′ ⇐= τ

Then by inversion on the rules check-p-lemma and trans-p-lemma, we have

D1

∆; Γ ` t =⇒ τ∗
D2

∆; Γ, x : τ∗ `P P ′ ⇐= τ

D ::= ∆; Γ `P By I t as x;P ′ ⇐= τ
(check-p-lemma)

and
E1

∆; Γ ` t =⇒ τ∗∗
E2

∆; Γ, x : τ∗∗ `P P ′ −⇀ t′ ⇐= τ

E ::= ∆; Γ `P By I t as x;P ′ −⇀ let x = t in t′ ⇐= τ
(trans-p-lemma)

Note that by uniqueness of synthesised types, τ∗ = τ∗∗. So we can apply the induction hypothesis on D2

and E2 to get
F ::= ∆; Γ, x : τ∗ ` t′ ⇐= τ

Lastly, we use D1 and F with the typing rule bel-let to show that the let-expression is well-typed:

D1

∆; Γ ` t =⇒ τ∗
F

∆; Γ, x : τ∗ ` t′ ⇐= τ

∆; Γ ` let x = t in t′ ⇐= τ
(bel-let)

Case 2. If P unboxes a term, then we have

D ::= ∆; Γ `P By Unboxing t as X;P ′ ⇐= τ

E ::= ∆; Γ `P By Unboxing t as X;P ′ −⇀ let [Ψ ` X] = t in t′ ⇐= τ

and inversion of the rules check-p-unbox and trans-p-unbox produces

D1

∆; Γ ` t =⇒ [Ψ ` A]

D2

∆, X : (Ψ ` A); Γ `P P ′ ⇐= τ

D ::= ∆; Γ `P By Unboxing t as X;P ′ ⇐= τ
(check-p-unbox)

and
E1

∆; Γ ` t =⇒ [Ψ ` A]

E2
∆, X : (Ψ ` A); Γ `P P −⇀ t′ ⇐= τ

E ::= ∆; Γ `P By Unboxing t as X;P ′ −⇀ let [Ψ ` X] = t in t′ ⇐= τ
(trans-p-unbox)

By means of the induction hypothesis on D2 and E2, we obtain

F ::= ∆, X : [Ψ ` A]; Γ ` t′ ⇐= τ,
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which can be used in the rule bel-letbox to get what we want:

D1

∆; Γ ` t =⇒ [Ψ ` A]

F
∆, X : [Ψ ` A]; Γ ` t′ ⇐= τ

∆; Γ ` let [Ψ ` X] = t in t′ ⇐= τ
(bel-letbox)

Case 3. When P is a directive D, we invert the rules check-p-dir and trans-p-dir to get

D′ ::= ∆; Γ `D D ⇐= τ

E ′ ::= ∆; Γ `D D −⇀ t⇐= τ

and appeal to the induction hypothesis with D′ and E ′.
So much for translating proofs. Now we prove statement (ii) concerning directives. Let

D ::= ∆; Γ `D D ⇐= τ

E ::= ∆; Γ `D D −⇀ t⇐= τ

We will do a case analysis on the three possibilities for D.
Case 1. The base case of the induction is when D is a solve directive. In this case,

D ::= ∆; Γ `D solve t⇐= τ

and we can invert the rule check-d-solve to get ∆; Γ ` t⇐= τ , exactly what was to be shown.
Case 2. If D is an intros directive, we have

D ::= ∆; Γ `D intros{∆′; Γ′ `P P} ⇐= τ

E ::= ∆; Γ `D intros{∆′; Γ′ `P P} −⇀ t⇐= τ

and we invert on the rules check-d-intros and trans-d-intros to obtain

D1

unroll(∆; Γ; τ) = τ ′
D2

∆′; Γ′ `P P ′ ⇐= τ ′

∆; Γ `D intros{∆′; Γ′ `P P ′} ⇐= τ
(check-d-intros)

and

E1
unroll(∆; Γ; τ) = τ ′

E2
∆′; Γ′ `P P ′ −⇀ t′ ⇐= τ ′

E3
∆′; Γ′ ` t′ ⇐= τ ′

....
∆; Γ ` t⇐= τ

∆; Γ `D intros{∆′; Γ′ `P P ′} −⇀ t⇐= τ
(trans-d-intros)

(The triples returned under D1 and E1 are identical because the unrolling operation is well-defined and
deterministic.) Now we appeal to the induction hypothesis on D2 and E2 to get

F ::= ∆′; Γ′ ` t′ ⇐= τ ′

Now with E3 and F , we can perform a substitution to get ∆; Γ ` t⇐= τ .
Case 3. The final case is when D is split directive. Then we have

D ::= ∆; Γ `D split t
−−−−−−−−−−−−−−−−→
Case ci{∆i; Γi `P Pi} ⇐= τ

E ::= ∆; Γ `D split t
−−−−−−−−−−−−−−−−→
Case ci{∆i; Γi `P Pi} −⇀ case t of

−−−−−−−→
| pi ⇒ ti ⇐= τ
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Then inversion on the rules check-d-split and trans-d-split gives

D1 ::= ∆; Γ ` t =⇒ [U ] D2 ::= coverage(∆ ` U) = B
D3 ::= B(ci) = (∆i; Γi; θi; pi) D4 ::= ∆i; Γi `P Pi ⇐= [[θi]]τ

D ::= ∆; Γ `D split t
−−−−−−−−−−−−−−−−→
Case ci{∆i; Γi `P Pi} ⇐= τ

(check-d-split)

and
E1 ::= ∆; Γ ` t =⇒ [U ] E2 ::= coverage(∆ ` U) = B

E3 ::= B(ci) = (∆i; Γi; θi; pi) E4 ::= ∆i; Γi `P Pi −⇀ ti ⇐= [[θi]]τ

E ::= ∆; Γ `D split t
−−−−−−−−−−−−−−−−→
Case ci{∆i; Γi `P Pi} −⇀ case t of

−−−−−−−→
| pi ⇒ ti ⇐= τ

(trans-d-split)

We apply the inductive hypothesis on D4 and E4, obtaining

F ::= ∆i; Γi ` ti ⇐= [[θi]]τ

This is the last piece we need to prove that the Beluga case-expression is well-typed.

D1 ::= ∆; Γ ` t =⇒ [U ] D2 ::= coverage(∆ ` U) = B
D3 ::= B(ci) = (∆i; Γi; θi; pi) F ::= ∆i; Γi ` ti ⇐= [[θi]]τ

∆; Γ ` case t of
−−−−−−−→
| pi ⇒ ti ⇐= τ

(bel-case)

In all three cases, the Harpoon directive is translated into a well-typed Beluga term.

5. RELATED WORK

History. The first computer languages designed to express mathematical proofs in a machine-verifiable
fashion were created during the Automath project, started in 1967 by N. G. de Bruijn [3]. The project
culminated in the complete translation and verification of E. Landau’s classic text Grundlagen der Analysis
in 1976 [2]. This required the formalisation of the classical logic used in conventional mathematics. A
generalisation arose in 1988 in the form of the Edinburgh Logical Framework (LF), which provides a powerful
means of formally presenting arbitrary logical systems [10]. In 1999, LF was implemented in the form of
the Twelf logic programming language [21], which uses higher-order abstract syntax (HOAS) to represent
name-binding in an object language [21]. Beluga extends the techniques used in Twelf with a type-system
based on Contextual Modal Type Theory [17], which allows the direct manipulation of open terms by treating
contexts as first-class objects [23].

Naturally, proof assistants have been useful to mathematical researchers as well. In 1976, K. Appel and
W. Haken famously proved the four-colour theorem of graph theory by means of an exhaustive computerised
analysis of hundreds of different cases [1]. This method was somewhat controversial, because the computer
produced a proof in a long and technical format. Complete inspection of such a proof by a human mathemati-
cian was infeasible; one needed to have complete faith in the program that constructed the proof. The essence
of the dispute hinged on the question of whether empirical testing of a computer program is equivalent to a
mathematical proof. Judging by the sheer amount of bugs that routinely riddle industry software, we know
that the answer is a definitive no. More recently however, the four-colour theorem has been reformalised and
proven using Coq [8], and because the metatheory of Coq is trusted, this program is a far less controversial
certificate of the theorem’s correctness.

One does not normally think of mathematics as a discipline that lacks rigour and formality; however,
proving mathematical concepts in a proof language requires more care and precision than proving them on
paper. For example, it took a large group of researchers six years to formalise the Feit-Thompson Odd
Order Theorem of group theory [9]. The reward is a fully-verified proof that can be used to prove further
results in the future. Mathematical progress is highly incremental and new theorems are often built upon
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dozens of prior ones. This suggests that the field would greatly benefit from a large-scale, mechanically-
proven database of all known mathematical truths. Indeed, this is what the anonymously-authored “QED
Manifesto” proposed in 1994 [26].

Tactic languages. During the 1970s, the LCF (Logic for Comuputable Functions) automated theorem
prover was developed at Stanford University. Its implementation enabled users to build proofs step-by-step
using a language of commands [16]. In addition, a metalanguage called ML could be used to write tactics
for the system. This language was highly influential and many modern functional programming languages
take inspiration from ideas first seen in ML.

The proof assistant Coq began life at INRIA in 1984 as an implementation of the Calculus of Constructions
by T. Coquand and G. Huet [4]. An extensive description of Coq’s modern tactic language is given by D.
Delahaye in [6]. This high-level language, called Ltac, allows users to define their own tactics without having
to delve into Coq’s internals. However, Ltac does not statically guarantee the soundness of the constructed
proof; the user’s custom tactics may create ill-typed terms. Ziliani et al. addressed this issue with the typed
language Mtac [25], but in doing so, lost many of the backward-reasoning features of Ltac. A more recent
successor, called Mtac2 [12], combines the strengths of Ltac and Mtac by allowing the user to work directly on
Coq’s proof state while also statically detecting various classes of errors with what it calls “typed backward
reasoning”.

Just as in Harpoon, there is a duality between theorems proven in Coq and dependently-typed func-
tional programs. The flexibility of proof assistants like Coq allows researchers to investigate the validity of
mathematical statements in different logical frameworks. As just one example of this, a Coq program due
to L. Cruz-Filipe proved all the theorems of elementary real analysis up to and including the Fundamental
Theorem of Calculus constructively, i.e. in a logic where proof by contradiction is not allowed [5].

Harpoon is strictly simpler than the tactic language of Coq, because it does not allow users to define
their own tactics. Instead, the tactics that Harpoon supports are the ones that come up most often in the
development of proofs in Beluga. The fixed number of tactics makes the correctness of the Harpoon system
significantly easier to prove.

6. CONCLUSION

The contributions described in this paper form a layer of verification in the development of proofs in Beluga’s
logical framework. Harpoon’s proof script format provides a way to save completed proofs for subsequent
use, and the typechecking algorithm ensures these scripts are a robust representation of an interactively-
constructed proof. With the addition of the translation procedure, Harpoon provides an alternative method
to write Beluga programs.

Programs are usually written in the form of plain text. However, for a large portion of the time it
takes to write a program, the partial source text is not syntactically well-formed and thus meaningless
to the computer. Various methods have been devised to divorce the construction of programs from the
text that represents it. For example, to write programs in Scratch, a language designed to teach children
the foundations of programming, users drag and drop atomic statements and expressions in user-friendly
interface that illustrates the constraints of the language’s abstract syntax [14]. In a stronger vein, there
are programs known as structure editors that allow programmers to directly build the abstract syntax tree
of their programs. An example is Hazelnut, which is based on a bidirectionally-typed lambda calculus and
allows editing over statically-meaningful incomplete terms. Hazelnut’s metatheory has been formalised with
help from the Agda proof assistant [18].

The formal typechecking and translation of Harpoon proofs closes the gap between proof scripts and
functional programs. These pieces allow Harpoon to be more than just a read-eval-print loop; it can become
a vital tool in the development of Beluga programs.
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