
The OPythn programming language

by

Marcel K. Goh

McGill University

Note. This report was written as part of an NPRG045 Individual Software Project
for the Summer 2019 term at Charles University in Prague. The author would like
to thank Adam Dingle for his willingness to supervise an exchange student, and for
his careful supervision and constant encouragement.

1. INTRODUCTION

The OPythn project implements a working subset of the Python programming language by means of a
bytecode compiler and interpreter, written in OCaml. Users will be able to interact with OPythn via a
top-level read-eval-print loop or interpret OPythn source code directly from a file. This report will con-
sist of a specification of the interpreter and the OPythn language, followed by a brief description of the
implementation.

2. GETTING STARTED

OPythn should work on Unix/Linux operating systems. OPythn’s source code requires that an installation
of OCaml be present on the system in order to compile. In addition, the following packages are needed:

• extlib

• menhir

• ppx_deriving

The user may find it convenient to use OPAM, OCaml’s package manager. All required packages can be
installed via OPAM by running opam install extlib menhir ppx_deriving. Once this is set up, running
make from the main OPythn directory compiles the program. To delete files generated by Make, run make

clean.

2.1. Usage

Once compiled, OPythn can be started using commands of the format ./main [options] [filename] from
the main opythn directory. A list of valid command-line options can be displayed by running ./main --

help. Calling the program with no options or file arguments starts the REPL (read-eval-print loop) with
default options.

+--+

| OPYTHN INTERACTIVE MODE |

| Author: Marcel Goh (Release: 24.VI.2019) |

| Type "Ctrl-C" for options. |

+--+

]=>

In the REPL, the user can enter OPythn statements line-by-line for the interpreter to evaluate. The REPL
saves the environment between inputs. Entering Ctrl-C interrupts the REPL and opens a menu from which
the user can set options, clear the current environment, or exit the program.

Another way to run OPythn source code is to enter an entire program into a plain-text editor and save
it as a file with the extension .opy. Then running ./main <filename> from the command-line interprets
the code and produces the specified program behaviour. Simple examples of OPythn programs are included
in the examples folder.

1

3. THE OPYTHN PROGRAMMING LANGUAGE

This section describes the OPythn language. To avoid repeating too much of the Python specification, it is
assumed that the reader has basic familiarity with Python.

3.1. Lexical conventions

The OPythn interpreter reads source code as ASCII characters, which are fed into a lexer. The following is
a brief outline of the input that the interpreter expects.

3.1.1. Line and block structure. The end of a line is represented by the NEWLINE token. In general,
simple statements cannot be split over multiple lines. However, an expression in parentheses, square brackets,
or curly braces can be written over multiple lines without ending the statement. The # character can be
used to indicate comments in source code. Any letters from # to the end of the line will be ignored by the
lexer. A line that contains only whitespaces or comments is ignored by the lexer except during interactive
evaluation, when a blank line is used to indicate the end of a multi-line statement.

3.1.2. Keywords and identifiers. The following are OPythn keywords and cannot be used in ordinary
identifiers:

True False None and or not

if elif else for in while

break continue class is del pass

in def global nonlocal lambda

Any string that is not a keyword and contains uppercase and lowercase letters, underscores, and (except
for the first character) numbers is a valid identifier. Case is significant. Some names are used by OPythn’s
standard library functions, which are further described in Section 3.2.7.

3.1.3. Literals. Strings are enclosed in matching single quotes or double quotes. Triple-quoted strings
are not supported, nor are formatted string literals. The backslash character \ is used to escape certain
characters such as tabs and newlines.

There are two types of numeric literals in OPythn: integers and floating-point numbers. Leading zeroes
in a non-zero decimal integer are not allowed. Underscores are also not allowed in numeric literals, unlike
in Python 3. Floating-point literals are supported, but must be supplied in point form and not in scientific
notation.

integer: ’-’? [’1’-’9’] [’0’-’9’]* | ’-’? ’0’*

pointfloat: ’-’? [’0’-’9’]* ’.’ [’0’-’9’]* | [’0’-’9’]+ ’.’

3.1.4. Operators and delimiters. All symbolic operators and delimiters are inherited from standard
Python except the @ and @= symbols. (They are used for matrix multiplication and decorators, both of
which are not features of OPythn.)

3.2. Language

The core of OPythn is designed to be lightweight and minimal. Basic types and operations, control struc-
tures, and elementary data structures are included, while more complex Python constructions, such as
comprehensions, generators, and coroutines are omitted.

3.2.1. Simple and compound types. Every value in OPythn is of a certain type. There are four primitive
types (int, float, str, and bool) and all of them are immutable. Integers are represented with 63 bits and
can range between −4, 611, 686, 018, 427, 387, 904 and 4, 611, 686, 018, 427, 387, 903 inclusive. Strings contain
8-bit characters.

OPythn has three compound types: list, dict, and tuple. Of these, only tuples are immutable. Lists
are zero-indexed and accessing an element via its index takes constant time. Dictionaries support values of
different types. For example, d = 2: ’bonjour’, False: 3.3 is a valid OPythn dictionary.

3.2.2. Numeric and boolean operations. Ordinary arithmetic operators for addition, multiplication,
subtraction, division, modulus, and exponentiation are supported between types int and float. When

2

performing integer division, OPythn takes the floor of the quotient, so -13 // 5 gives -3, and the modulus
operator always gives a positive result, so -13 % 5 returns 2.

OPythn supports the bitwise operations |, 137, &, <<, >>, and ‘176 on integers. Numeric values can be
compared using the operators <, <=, >, and >= (chained comparisons are not allowed), and any values can
be tested for equality using ==, !=, is, and is not. Any object can be tested for truth value. The objects
None, False, 0, 0.0, ’’, [], and {} are considered false; any other object is considered true.

3.2.3. String operations. The following useful methods are defined on strings, along with all of the
methods on sequence types described in the following subsection.

find() isalpha() isdigit() islower() isupper()

3.2.4. Operations on sequence types. Strings, lists, and tuples are considered sequence types in OPythn
and support a number of useful operations.

• The element at a given index can be accessed using the postfix [] operator. The expression inside must
be an integer. Negative indices are allowed. For example, if x is the list [1,2,3,4], then x[-2] will
return 3. Indexing into a list is the normal way to mutate a value. For example, running the expression
x[1] = ’grape’ changes x into the list [1,’grape’,3,4]. This cannot be done with tuples because
they are immutable.

• The number of elements in the sequence (characters, in the case of strings) can be determined using the
built-in function len().

• To determine if a sequence l contains the element e, one may use the expression e in l which returns
the corresponding boolean. When used with a for loop, this syntax allows the user to iterate through
all the elements in a list. To see if an element does not belong to a list, one may use not in, but of
course this cannot be used to create a for loop. The enumerate object does not exist in OPythn.

• Sequence objects can be sliced using the operator :. For example, if a = [1,True,3,’hi’,5], then
a[1:3] would give the list [True, 3]. This can be used with the del keyword to delete a group of
adjacent elements in a sequence. Slicing in step increments is not supported and a slice object cannot
be explicitly created.

• Sequences of the same type can be concatenated using the + operator.

• A sequence can be explicitly converted into a list by calling list() on it. (Calling list() on a list
returns the same list.)

There are no list methods in OPythn. Because concatenation is performed in amortized constant time,
the user may find it convenient to append to or extend a list by using the syntax list += [new1, new2,

...]. In addition, OPythn supports the special method range(), which behaves as in Python when called
with one, two, or three arguments.

3.2.5. Operations on dictionaries. The following operations are defined on dictionaries.

• Accessing an element can be done using the syntax dict[key]. New entries can be added by running
dict[new_key] = new_value, but duplicate keys are not allowed, so if an entry already exists with the
same key, it will be replaced with the new key-value pair.

• An entry can be deleted using the syntax del dict[key] and the entire dictionary can be deleted by
calling del on the whole dictionary.

• The user can determine if a key is present in a dictionary using in or not in.

Note that two dictionaries are equal if they contain the same keys and values. The following methods
are defined on dictionary objects.

clear() items() keys() values()

3.2.6. Branching structures. OPythn inherits the control structures if, for, and while from Python.
Like in Python, consecutive lines at the same indentation level belong to the same block. Conditional
expressions of the form <expr> if <condition> else <expr> are also valid.

3

3.2.7. Functions. OPythn supports higher-order functions and nested functions. In OPythn, functions
cannot modify variables outside their scope, unless one of the keywords global or nonlocal is used. OPythn
supports anonymous functions using the keyword lambda. OPythn functions take positional arguments only,
and specifying default values is not allowed.

The following functions, implemented “under the hood” in OCaml, comprise OPythn’s standard library
and are included in a normal installation.

abs() bin() bool() chr() float() hex()
input() isinstance() issubclass() int() len() oct()
ord() print() range() round() str() type()

3.2.8. Classes and objects. OPythn is object-oriented and allows the user to define classes. Multiple
inheritance are not supported. When creating a class, the following special methods can be added to
indicate how the class should behave: __init__(), __eq__(). The __ne__() method is not supported, as
e1 != e2 is always equivalent to not (e1 == e2) in OPythn.

OPythn does not allow private attributes and methods. In general, an object’s attributes and methods
can be accessed and mutated by functions outside the class’ definition. All Python values are objects, but
the user is not allowed to subclass built-in types.

3.2.9. Error handling. OPythn does not include support for exceptions. When an error occurs, the
program prints an error message and either terminates or returns to the REPL.

4. IMPLEMENTATION

Both the OPythn bytecode compiler and interpreter will be implemented in OCaml. This section gives
a rough overview of the process by which OPythn source code is handled and executed. The modules
mentioned in this section can be found in the src folder of the OPythn repository.

4.1. Lexical analysis

Upon reading source code, the OPythn front-end passes the data as a string to a series of functions that lex
the code into tokens. The lexer will be created with the help of ocamllex, a program that generates a finite
state machine in OCaml. This resulting lexer matches regular expressions in the string to convert chunks of
characters into the correct tokens.

The lexer will produce tokens of the following OCaml datatype:

type token =

NEWLINE | INDENT | DEDENT | EOF

| ID of string (* identifier *)

| INT of int

| FLOAT of float

| STR of string

| IF | WHILE (* other keywords... *)

| (* operators and delimiters *)

In OPythn, the amount of leading whitespace at the beginning of a line indicates the indentation level of
the line. A tab character counts for exactly four spaces during this computation. Indentation levels of
consecutive lines are used to generate INDENT and DEDENT tokens. This is done by means of a stack using
the following algorithm, as described by the standard Python reference [1].

Algorithm 1. Insertion of INDENT and DEDENT tokens (as part of general lexing procedure)

01 procedure lex (OPythn source code) begin
02 token list ← create a new empty list;
03 stack ← create a new empty stack;
04 stack .push(0);
05 while there are lines to be read do

4

06 line ← the current line;
07 num sp ← the number of leading spaces in line;
08 if curr > stack .peek() then
09 stack .push(curr);
10 token list .add(INDENT);
11 else if curr < stack .peek() then
12 count ← 0;
13 while curr < stack .peek() do
14 stack .pop();
15 count ← count + 1;
16 end while
17 for i← 0, count do
18 token list .add(DEDENT);
19 end for
20 end if
21 tokenise the rest of the line and add tokens to token list ;
22 end while
23 return token list ;
24 end procedure

4.2. Parsing

The tokens produced by the lexer is then fed into the parser, which will be implemented according to the
grammar rules outlined in the appendix and using menhir, an OCaml parser generator. The result will be
an abstract syntax tree that represents the structure and semantics of the OPythn program. This tree is
represented in the datatypes Ast.op, Ast.expr, and Ast.stmt, which represent operations, expressions, and
statements respectively.

4.3. Bytecode

The abstract syntax tree is passed to the bytecode compiler, which produces instructions for a virtual
stack machine, represented as the Instr.t datatype. Some instructions, such as NOP and BINARY_ADD, take
no arguments, while others take one or several arguments. To resolve the scope of user-defined names,
the compiler makes two passes through its input. During the first pass, every identifier is assigned a tag
indicating the level at which it is defined. This allows the second pass to produce the correct STORE and
LOAD instructions for each name.

4.4. Virtual machine

The bytecode interpreter receives as input a DynArray1 of Instr.t. At the beginning of execution, the
program counter is initialised to 0 and the stack is empty. Various hashtables hold the variable bindings
of different scopes. When interpretation begins, a “global” hashtable is initialised to empty and a “built-
in” hashtable contains all of the standard OPythn methods and functions. A separate list of hashtables is
maintained for function closures. The head element of this list contains all local variable bindings and the
subsequent hashtables contain the bindings of the enclosing scopes.

During each iteration of the execution loop, the instruction at the index of the program counter is read
and executed. Most instructions modify the stack in some way; a notable exception is the family of jump
instructions, which modify the program counter instead. If the program counter is not explicitly set, it is
incremented before the next iteration. When the program counter exceeds the bounds of the instruction
array, the program halts.

The stack holds typed OPythn values of the following mutually recursive datatypes, defined in the
Py_val module. Tuples can be represented as simple arrays; however, since an OPythn list may be mutated,
it is more naturally implemented as a DynArray. To represent a dictionary, we use OCaml’s Hashtbl module.

1 From the extlib library.

5

Finally, the “sequence” is OPythn’s way of dealing with iteration and lazy lists and it is relies on OCaml’s
native Seq module.

type cls =

name : string;

super : cls option;

attrs : (string, t) Hashtbl.t;

and obj =

cls : cls;

fields : (string, t) Hashtbl.t;

and t =

Int of int

| Float of float

| Bool of bool

| Str of string

| Fun of string * (t list -> t)

| Obj of obj

| Class of cls

| Type of string

| List of t DynArray.t

| Tuple of t array

| Dict of (t, t) Hashtbl.t

| Seq of t Seq.t

| None

4.5. A simple example

The reader may find it enlightening to study how OPythn interprets the following snippet of code, which
multiplies two integers:

x = int(input("Enter the multiplicand: "))

y = int(input("Enter the multiplier: "))

acc = 0

while y > 0:

if y % 2 == 0:

x *= 2

y //= 2

else:

acc += x

y -= 1

The lexer reads the input and splits it into the following tokens.

START_FILE

(ID "x") ASSIG (ID "int") LPAREN (ID "input") LPAREN

(STR "Enter the multiplicand: ") RPAREN RPAREN NEWLINE

(ID "y") ASSIG (ID "int") LPAREN (ID "input") LPAREN

(STR "Enter the multiplier: ") RPAREN RPAREN NEWLINE

(ID "acc") ASSIG (INT 0) NEWLINE

WHILE (ID "y") GT (INT 0) COLON NEWLINE

INDENT IF (ID "y") MOD (INT 2) EQ (INT 0) COLON NEWLINE

INDENT (ID "x") TIMES_A (INT 2) NEWLINE

(ID "y") INT_DIV_A (INT 2) NEWLINE

DEDENT ELSE COLON NEWLINE

INDENT (ID "acc") PLUS_A (ID "x") NEWLINE

6

(ID "y") MINUS_A (INT 1) NEWLINE

DEDENT DEDENT (ID "print") LPAREN

(STR "The product is:") COMMA (ID "acc") RPAREN NEWLINE

EOF

Next, the parser builds an abstract syntax tree that represents the structure of the program.

[(Assign ((Var "x"),

(Call ((Var "int"),

[(Call ((Var "input"),

[(StrLit "Enter the multiplicand: ")]))]))

));

(Assign ((Var "y"),

(Call ((Var "int"),

[(Call ((Var "input"),

[(StrLit "Enter the multiplier: ")]))]))

));

(Assign ((Var "acc"), (IntLit 0)));

(While ((Op (Gt, [(Var "y"); (IntLit 0)])),

[(If ((Op (Eq, [(Op (Mod, [(Var "y"); (IntLit 2)]));

(IntLit 0)])),

[(Assign ((Var "x"),

(Op (Times, [(Var "x"); (IntLit 2)]))));

(Assign ((Var "y"),

(Op (IntDiv, [(Var "y"); (IntLit 2)]))))],

(Some [(Assign ((Var "acc"),

(Op (Plus, [(Var "acc"); (Var "x")]))));

(Assign ((Var "y"),

(Op (Minus, [(Var "y"); (IntLit 1)]))))])

))

]

));

(Expr (Call ((Var "print"),

[(StrLit "The product is:"); (Var "acc")])))]

The bytecode compiler walks the tree twice, first resolving the scope of each identifier (in this example, all
identifiers are either built-in or global) before producing the actual instruction array.

0 LOAD_GLOBAL "int"

1 LOAD_GLOBAL "input"

2 LOAD_CONST (Str "Enter the multiplicand: ")

3 CALL_FUNCTION 1

4 CALL_FUNCTION 1

5 STORE_GLOBAL "x"

6 LOAD_GLOBAL "int"

7 LOAD_GLOBAL "input"

8 LOAD_CONST (Str "Enter the multiplier: ")

9 CALL_FUNCTION 1

10 CALL_FUNCTION 1

11 STORE_GLOBAL "y"

12 LOAD_CONST (Int 0)

13 STORE_GLOBAL "acc"

14 LOAD_GLOBAL "y"

15 LOAD_CONST (Int 0)

16 COMPARE_GT

7

17 POP_JUMP_IF_FALSE 42

18 LOAD_GLOBAL "y"

19 LOAD_CONST (Int 2)

20 BINARY_MOD

21 LOAD_CONST (Int 0)

22 COMPARE_EQ

23 POP_JUMP_IF_FALSE 33

24 LOAD_GLOBAL "x"

25 LOAD_CONST (Int 2)

26 BINARY_MULT

27 STORE_GLOBAL "x"

28 LOAD_GLOBAL "y"

29 LOAD_CONST (Int 2)

30 BINARY_INT_DIV

31 STORE_GLOBAL "y"

32 JUMP 41

33 LOAD_GLOBAL "acc"

34 LOAD_GLOBAL "x"

35 BINARY_ADD

36 STORE_GLOBAL "acc"

37 LOAD_GLOBAL "y"

38 LOAD_CONST (Int 1)

39 BINARY_SUB

40 STORE_GLOBAL "y"

41 JUMP 14

42 LOAD_GLOBAL "print"

43 LOAD_CONST (Str "The product is:")

44 LOAD_GLOBAL "acc"

45 CALL_FUNCTION 2

46 POP_TOP

47 LOAD_CONST None

48 RETURN_VALUE

Finally, the bytecode is interpreted and the specified behaviour is produced in the terminal:

Enter the multiplicand: 23

Enter the multiplier: 98

The product is: 2254

5. GRAMMAR

This is the complete OPythn grammar specification. The structure borrows heavily from Python’s grammar
[1]. For brevity, the AST nodes that each rule produces have been omitted. These details may be found in
the full working grammar, defined in src/parser.mly

(* Input *)

input: START_FILE file_input | START_REPL repl_input

file_input: stmt* EOF

repl_input: NEWLINE | EOF | simple_stmt | compound_stmt NEWLINE

(* Statements *)

stmt: simple_stmt | compound_stmt

simple_stmt: small_stmts SEMIC? NEWLINE

small_stmts: small_stmt | small_stmts SEMIC small_stmt

small_stmt:

8

expr_stmt | flow_stmt | global_stmt

| nonlocal_stmt | pass_stmt | del_stmt

flow_stmt: BREAK | CONTINUE | return_stmt

pass_stmt: PASS

compound_stmt:

if_stmt | while_stmt | for_stmt

| funcdef | classdef

condition: expr | cond_expr

else_clause: ELSE COLON suite

if_stmt: IF condition COLON suite elif_stmt* else_clause?

elif_stmt: ELIF condition COLON suite

while_stmt: WHILE condition COLON suite

for_stmt: FOR ID IN expr COLON suite

suite: deep_suite

deep_suite:

simple_stmt NEWLINE

| NEWLINE INDENT stmt+ DEDENT

assig_target: ID | attributeref | subscription

assignment_stmt: assig_target ASSIG assignable_expr

aug_assign: assig_target bin_op_aug expr

expr_stmt: expr | cond_expr | assignment_stmt | aug_assign

del_stmt: DEL expr

return_stmt: RETURN assignable_expr?

global_stmt: GLOBAL ID

nonlocal_stmt: NONLOCAL ID

(* Expressions *)

assignable_expr: expr | cond_expr

cond_expr: expr IF expr ELSE assignable_expr

comp_op:

LT | GT | EQ | LEQ | GEQ | NEQ

| IN | NOT_IN | IS | IS_NOT

bin_op_aug:

BW_OR_A | BW_XOR_A | BW_AND_A | LSHIFT_A | RSHIFT_A | PLUS_A

| MINUS_A | TIMES_A | FP_DIV_A | INT_DIV_A | MOD_A | EXP_A

slice: COLON expr

subscription: expr LSQUARE expr slice? RSQUARE

expr:

atom | call | attributeref | subscription

| expr BW_OR expr | expr BW_XOR expr | expr BW_AND expr

| expr LSHIFT expr | expr RSHIFT expr | expr PLUS expr

| expr MINUS expr | expr TIMES expr | expr FP_DIV expr

| expr INT_DIV expr | expr MOD expr | expr EXP expr

| MINUS expr | BW_COMP expr

| expr OR expr | expr AND expr | NOT expr

| expr comp_op expr | LPAREN expr RPAREN

| LAMBDA param_id_list COLON expr

attributeref: expr DOT ID

key_datum: expr COLON expr

key_datum_list: key_datum | key_datum COMMA key_datum_list

tuple_list: expr COMMA expr | expr COMMA tuple_list

atom:

ID | INT | FLOAT | STR | TRUE | FALSE | NONE

9

| LPAREN RPAREN | LPAREN expr COMMA RPAREN

| LPAREN tuple_list RPAREN | LSQUARE argument_list? RSQUARE

| LCURLY key_datum_list? RCURLY

call: expr LPAREN argument_list? RPAREN

argument_list: expr | expr COMMA argument_list

(* Function and class definitions *)

funcdef: DEF ID LPAREN param_id_list? RPAREN COLON suite

classdef: CLASS ID class_params? COLON suite

param_id_list: ID | ID COMMA param_id_list

class_params: LPAREN RPAREN | LPAREN ID RPAREN

REFERENCES

[1] Guido van Rossum, The Python Language Reference (Python Software Foundation, 2019).

10

