TYPECHECKING PROOF SCRIPTS:

MAKING INTERACTIVE PROOF ASSISTANTS ROBUST

MARCEL GOH

5 DECEMBER 2019

WHY PROVE THINGS ABOUT LANGUAGES?

One motivation: nearly all software
has bugs!

Sometimes programs must be
completely bulletproof (e.g. network

security, avionics). \

Debugging: testing, static
verification, etc.

Better: prevent creation of bugs in
the first place! (Formal models of
anguages.)

Here proof assistants can come in
nandly.

BUG-FREE SOFTWARE: COMPCERT

A compiler is just a program. It can be a weak link.

CSmith (University of Utah): found 325+ bugs in GCC, Clang, and
other popular C compilers.

The only compiler found to have no bugs was CompCert, a C
compiler written in Coq (X. Leroy, INRIA).

Six CPU-years spent trying to find bugs in CompCert — none
found, except in unproven parts (e.g. the parser).
(CompCert C] 5;‘:2;1::;50?: [Clight }lot(:/s zi:ipn:iif?:;?onns

Optimizations: constant prop., CSE, stack allo?atlon
inlining, tail calls, dead code of “&” variables

CFG construction . instruction .
CminorSel : Cminor
expr. decomp. selection

register allocation (IRC)

calling conventions

linearization [Li } layout of
of the CFG inear stack frames C
asm cede geperation

[Asm x86] [Asm ARMJ [Asm PPCJ

WHY TACTIC LANGUAGES?

< >

Interactive Fully automated

construction of proof search:

proofs: requires user Difficult (how to

guidance. Happy medium: handle induction?
Tactics!

File Edit View Navigation Try Tactics Templates Queries Tools Compile ‘Windows Help
O % & 4 J9F & 80 « » [

@Arithy @Arith_basev @PeanoNaty

FEVErL Mj LNUUCLLON M UeSLIPUCL M SLMpL; FewriLe 7infl; SPLil; duLo; edsy. 2 Subgoals
Qed. n : nat
IHn : forall m : nat, (n ?=m) <> Gt <->n<=m
Lemma compare_lt iff nm : (n 2=m) = Lt <->n<m m : nat A J
P . H:n<=m
revert m; induction n; destruct m; simpl; rewrite ?IHn; split; try easy. (1/2)
- intros _. apply Peano.le_n_S, Peano.le_@_n. Sn<=sSm
- apply Peano.le_n_S. (2/2)
- apply Peano.le_S_n. <=m

Qed.

Lemma compare_le iff nm : (n 2=m) <> Gt <-> n <=m.
P

revert m; induction n; destruct m; simpl; rewrite ?IHn.

- now split.

- split; intros. apply Peano.le_@_n. easy.

- split. now destruct 1. inversion 1.

- split; intros.| now apply Peano.le_n_S. now apply Peano.le_S_n
Qed.

Lemma compare_antisym n m : (m ?= n) = CompOpp (n 2= m)

Proof. []
revert m; induction n; destruct m; simpl; trivial.
Qed. o

Lemma compare_succ nm : (Sn ?=5Sm) = (n ?2=m). Messages |~ | | Errors U Jobs u
Proof.

reflexivity.

ed.

(* BUG: Ajout d'un cas * aprés preuve finie (deuxiéme niveau +++***) :
* ---> Anomaly: Uncaught exception Proofview.IndexOutOfRange(_). Please report. *

(** ** Minimum, maximum *)

Lemma max_1 : forallnm, m<=n -> max n m
Proof.

exact Peano.max_1.

ed.

Lemma max_r : forallnm, n<=m -> max n m
Proof.

exact Peano.max_r.
Qed.

Ready in Nat, proving compare_le_iff Line: 211 Char: 18 Coq is ready

HARPOON: A TACTIC LANGUAGE FOR BELUGA

* Beluga is a functional programming language
designed to reason about formal systems.

* Curry-Howard Correspondence: Beluga
programs are proofs.

* A function takes in arguments and returns
an output.

* A proof takes in hypotheses and returns a
theorem.

e Recursion = Induction

* Writing proofs by hand can be tricky and
sometimes tedious.

* Harpoon: a tactic-based proof assistant for
Beluga.

TACTICS IN HARPOON

* The Harpoon proof language is small, consisting of only a few tactics:
* intros: Introduces the available assumptions.

split: Breaks an assumption up into its cases, generating new
subgoals for each case.

by lemma/by ih: Invokes a previously-proven lemma, or invokes an
induction hypothesis.

unbox: Converts a computation-level assumption into a meta-
theoretic one.

* solve: Once enough assumptions are present, prove the theorem.

» Harpoon includes facilities for solving trivial cases automatically.

* Output is a proof script, which can be checked and re-run.

MY CONTRIBUTIONS

Designed typechecking rules for Harpoon proof scripts.

Outlined a translation procedure from Harpoon proof scripts to
Beluga programs.

Proved the soundness of the translation procedure.

Theorem. In contexts A and I, if a Harpoon proof script P checks
against type t and translates into Beluga term t, then the Beluga

term t checks against type t.

Implementation in OCaml (in progress).

A SMALL PROOF: NATURAL NUMBERS

Axioms:

le_z: Forall X, 0< X. 1le.s: If X <Y, then succ X <succ?.
Theorem. If M < N, then M < succ N.

Proof. We assume that M < N. Two ways we could have derived this:

i) From le_s.
There exist X,Y such that M =succ X, N =succY and X <Y.
By induction, X <Y means that X < succY.
But succY = N, so X < N.
We apply the axiom le_s: X < N implies that succ X < succ V.
So M < succ N.

From le_z.
This means that M = 0.

We apply the axiom le_z:
M < X for all X, so M < succN.

In both cases we proved that M < succN. |

THE HARPOON PROOF

Proof. We assume that M < N. Two ways we could have derived this:

i) From le_s.
There exist X, Y such that M =succ X, N =succY and X <Y.

By induction, X <Y means that X < succY.

But succY = N, so X < N.

We apply the axiom le_s: X < N implies that succ X < succ V.
So M < succN.

From le_z. P
This means that M = 0. {{N : [| -nat]l}i, {M : [|- nat]}"i
We apply the axiom le_z: | x1 : ([|- leq M N])x

M < X for all X, so M <succN. ; meta-split (x1)
case le_s:

{{Z : [|- 1eq X Z]}*, {X : [|- nat]l}*, {Y : [|- nat]}*

| x1* : ([|- leq (succ Y) (succ X)])=*

; by ih (lem [[- Y] [|- X] ([|- Z])) as ihO;
unbox (ih0) as IHO;
solve ([|- le_s IHO])

+

case le_z:

{{N : [|- nat]}x

| x1x : ([|- leq z N])=*

; solve ([|- le_z])

+

HARPOON TO BELUGA

intros
N : [| - nat]}"i, {M : [|- nat]}"i (Harpoon)
x1 : ([|- 1leq M N])x
; meta-split (x1)
case le_s:
{{Z : [|- 1eq X Z1}*, {X : [|- natl}x, {Y : [|- nat]}x
| x1*x : ([|- leq (succ Y) (succ X)])x
; by ih (Iem [[- Y] [|- X] (L |- Z])) as ihO;
unbox (ih0) as IHO;
solve ([|- le_s IHO])
} rec lem : [|- leg M N] -> [|- 1leq M (succ N)] =

case le z: fn x1 =>

{ {N : [|- nat]}x case x1 of
| x1*% : ([|- leq z N])=* | [|- le.s Z] =>
; solve ([|- 1le_z]) let ihO = lem [|- Z] in
4 let [|- IHO] = ihO in
[|- le_s IHO]
- le_z] =>
- le_z]

RECAP/CONCLUSION

Formalising languages makes them more robust.
Proof assistants help us prove things about languages.

Curry/Howard: Proofs are programs!

Alternate take: Proof assistants as an interactive medium for
writing programs. (Always produce well-typed programs.)

PDF of slides available: https://marcelgoh.github.io/research

https://marcelgoh.github.io/research

REFERENCES

CompCert homepage: http://compcert.inria.fr/compcert-C.html

Beluga homepage: http://complogic.cs.mcgqill.ca/beluga/

N. G. de Bruijn, “A Survey of the Project Automath,” Studies in
Logic and the Foundations of Mathematics 133 (1994), 141-161.

X. Leroy, “Formal verification of a realistic compiler,”
Communications of the ACM 52 (2009), 107-115.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
Understanding Bugs in C Compilers,”, Proceedings of the 32nd

ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI “11) (2011), 283-294.

http://compcert.inria.fr/compcert-C.html
http://complogic.cs.mcgill.ca/beluga/

