
TYPECHECKING PROOF SCRIPTS:

MARCEL GOH

5 DECEMBER 2019

MAKING INTERACTIVE PROOF ASSISTANTS ROBUST

WHY PROVE THINGS ABOUT LANGUAGES?

• One motivation: nearly all software
has bugs!

• Sometimes programs must be
completely bulletproof (e.g. network
security, avionics).

• Debugging: testing, static
verification, etc.

• Better: prevent creation of bugs in
the first place! (Formal models of
languages.)

• Here proof assistants can come in
handy.

BUG-FREE SOFTWARE: COMPCERT

• A compiler is just a program. It can be a weak link.

• CSmith (University of Utah): found 325+ bugs in GCC, Clang, and
other popular C compilers.

• The only compiler found to have no bugs was CompCert, a C
compiler written in Coq (X. Leroy, INRIA).

• Six CPU-years spent trying to find bugs in CompCert — none
found, except in unproven parts (e.g. the parser).

WHY TACTIC LANGUAGES?

Fully automated
proof search:

Difficult (how to
handle induction?)

Interactive
construction of

proofs: requires user
guidance. Happy medium:

Tactics!

Example: Coq

HARPOON: A TACTIC LANGUAGE FOR BELUGA

• Beluga is a functional programming language
designed to reason about formal systems.

• Curry-Howard Correspondence: Beluga
programs are proofs.

• A function takes in arguments and returns
an output.

• A proof takes in hypotheses and returns a
theorem.

• Recursion = Induction

• Writing proofs by hand can be tricky and
sometimes tedious.

• Harpoon: a tactic-based proof assistant for
Beluga.

TACTICS IN HARPOON

• The Harpoon proof language is small, consisting of only a few tactics:

• intros: Introduces the available assumptions.

• split: Breaks an assumption up into its cases, generating new
subgoals for each case.

• by lemma/by ih: Invokes a previously-proven lemma, or invokes an
induction hypothesis.

• unbox: Converts a computation-level assumption into a meta-
theoretic one.

• solve: Once enough assumptions are present, prove the theorem.

• Harpoon includes facilities for solving trivial cases automatically.

• Output is a proof script, which can be checked and re-run.

MY CONTRIBUTIONS

• Designed typechecking rules for Harpoon proof scripts.

• Outlined a translation procedure from Harpoon proof scripts to
Beluga programs.

• Proved the soundness of the translation procedure.

• Theorem. In contexts 𝚫 and 𝚪, if a Harpoon proof script P checks
against type 𝛕 and translates into Beluga term t, then the Beluga
term t checks against type 𝛕.

• Implementation in OCaml (in progress).

A SMALL PROOF: NATURAL NUMBERS

THE HARPOON PROOF

HARPOON TO BELUGA

(Harpoon)

(Beluga)

RECAP/CONCLUSION

• Formalising languages makes them more robust.

• Proof assistants help us prove things about languages.

• Curry/Howard: Proofs are programs!

• Alternate take: Proof assistants as an interactive medium for
writing programs. (Always produce well-typed programs.)

PDF of slides available: https://marcelgoh.github.io/research

https://marcelgoh.github.io/research

REFERENCES

• CompCert homepage: http://compcert.inria.fr/compcert-C.html

• Beluga homepage: http://complogic.cs.mcgill.ca/beluga/

• N. G. de Bruijn, “A Survey of the Project Automath,” Studies in
Logic and the Foundations of Mathematics 133 (1994), 141–161.

• X. Leroy, “Formal verification of a realistic compiler,”
Communications of the ACM 52 (2009), 107–115.

• X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
Understanding Bugs in C Compilers,”, Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’11) (2011), 283–294.

http://compcert.inria.fr/compcert-C.html
http://complogic.cs.mcgill.ca/beluga/

