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WHY PROVE THINGS ABOUT LANGUAGES?

One motivation: nearly all software
has bugs!

Sometimes programs must be
completely bulletproof (e.g. network

security, avionics). \

Debugging: testing, static
verification, etc.

Better: prevent creation of bugs in
the first place! (Formal models of
anguages.)

Here proof assistants can come in
nandly.




BUG-FREE SOFTWARE: COMPCERT

A compiler is just a program. It can be a weak link.

CSmith (University of Utah): found 325+ bugs in GCC, Clang, and
other popular C compilers.

The only compiler found to have no bugs was CompCert, a C
compiler written in Coq (X. Leroy, INRIA).

Six CPU-years spent trying to find bugs in CompCert — none
found, except in unproven parts (e.g. the parser).
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WHY TACTIC LANGUAGES?

< >

Interactive Fully automated

construction of proof search:

proofs: requires user Difficult (how to

guidance. Happy medium: handle induction?
Tactics!

File Edit View Navigation Try Tactics Templates Queries Tools Compile ‘Windows Help
O % & 4 J9F & 80 « » [

@Arithy  @Arith_basev  @PeanoNaty

FEVErL Mj LNUUCLLON M UeSLIPUCL M SLMpL; FewriLe 7infl; SPLil; duLo; edsy. 2 Subgoals
Qed. n : nat
IHn : forall m : nat, (n ?=m) <> Gt <->n<=m
Lemma compare_lt iff nm : (n 2=m) = Lt <->n<m m : nat A J
P . H:n<=m
revert m; induction n; destruct m; simpl; rewrite ?IHn; split; try easy. (1/2)
- intros _. apply Peano.le_n_S, Peano.le_@_n. Sn<=sSm
- apply Peano.le_n_S. (2/2)
- apply Peano.le_S_n. <=m

Qed.

Lemma compare_le iff nm : (n 2=m) <> Gt <-> n <=m.
P

revert m; induction n; destruct m; simpl; rewrite ?IHn.

- now split.

- split; intros. apply Peano.le_@_n. easy.

- split. now destruct 1. inversion 1.

- split; intros.| now apply Peano.le_n_S. now apply Peano.le_S_n
Qed.

Lemma compare_antisym n m : (m ?= n) = CompOpp (n 2= m)

Proof. [ ]
revert m; induction n; destruct m; simpl; trivial.
Qed. o

Lemma compare_succ nm : (Sn ?=5Sm) = (n ?2=m). Messages |~ | | Errors U Jobs u
Proof.

reflexivity.

ed.

(* BUG: Ajout d'un cas * aprés preuve finie (deuxiéme niveau +++*** ) :
* ---> Anomaly: Uncaught exception Proofview.IndexOutOfRange(_). Please report. *

(** ** Minimum, maximum *)

Lemma max_1 : forallnm, m<=n -> max n m
Proof.

exact Peano.max_1.

ed.

Lemma max_r : forallnm, n<=m -> max n m
Proof.

exact Peano.max_r.
Qed.

Ready in Nat, proving compare_le_iff Line: 211 Char: 18 Coq is ready




HARPOON: A TACTIC LANGUAGE FOR BELUGA

* Beluga is a functional programming language
designed to reason about formal systems.

* Curry-Howard Correspondence: Beluga
programs are proofs.

* A function takes in arguments and returns
an output.

* A proof takes in hypotheses and returns a
theorem.

e Recursion = Induction

* Writing proofs by hand can be tricky and
sometimes tedious.

* Harpoon: a tactic-based proof assistant for
Beluga.




TACTICS IN HARPOON

* The Harpoon proof language is small, consisting of only a few tactics:
* intros: Introduces the available assumptions.

split: Breaks an assumption up into its cases, generating new
subgoals for each case.

by lemma/by ih: Invokes a previously-proven lemma, or invokes an
induction hypothesis.

unbox: Converts a computation-level assumption into a meta-
theoretic one.

* solve: Once enough assumptions are present, prove the theorem.

» Harpoon includes facilities for solving trivial cases automatically.

* Output is a proof script, which can be checked and re-run.




MY CONTRIBUTIONS

Designed typechecking rules for Harpoon proof scripts.

Outlined a translation procedure from Harpoon proof scripts to
Beluga programs.

Proved the soundness of the translation procedure.

Theorem. In contexts A and I, if a Harpoon proof script P checks
against type t and translates into Beluga term t, then the Beluga

term t checks against type t.

Implementation in OCaml (in progress).




A SMALL PROOF: NATURAL NUMBERS

Axioms:

le_z: Forall X, 0< X. 1le.s: If X <Y, then succ X <succ?.
Theorem. If M < N, then M < succ N.

Proof. We assume that M < N. Two ways we could have derived this:

i) From le_s.
There exist X,Y such that M =succ X, N =succY and X <Y.
By induction, X <Y means that X < succY.
But succY = N, so X < N.
We apply the axiom le_s: X < N implies that succ X < succ V.
So M < succ N.

From le_z.
This means that M = 0.

We apply the axiom le_z:
M < X for all X, so M < succN.

In both cases we proved that M < succN. |




THE HARPOON PROOF

Proof. We assume that M < N. Two ways we could have derived this:

i) From le_s.
There exist X, Y such that M =succ X, N =succY and X <Y.

By induction, X <Y means that X < succY.

But succY = N, so X < N.

We apply the axiom le_s: X < N implies that succ X < succ V.
So M < succN.

From le_z. P
This means that M = 0. {{N : [ | -nat]l}i, {M : [ |- nat]}"i
We apply the axiom le_z: | x1 : ([ |- leq M N])x

M < X for all X, so M <succN. ; meta-split (x1)
case le_s:

{{Z : [ |- 1eq X Z]}*, {X : [ |- nat]l}*, {Y : [ |- nat]}*

| x1* : ([ |- leq (succ Y) (succ X)])=*

; by ih (lem [ [- Y] [ |- X] ([ |- Z])) as ihO;
unbox (ih0) as IHO;
solve ([ |- le_s IHO])

+

case le_z:

{{N : [ |- nat]}x

| x1x : ([ |- leq z N])=*

; solve ([ |- le_z])

+




HARPOON TO BELUGA

intros
N : [ | - nat]}"i, {M : [ |- nat]}"i (Harpoon)
x1 : ([ |- 1leq M N])x
; meta-split (x1)
case le_s:
{{Z : [ |- 1eq X Z1}*, {X : [ |- natl}x, {Y : [ |- nat]}x
| x1*x : ([ |- leq (succ Y) (succ X)])x
; by ih (Iem [ [- Y] [ |- X] (L |- Z])) as ihO;
unbox (ih0) as IHO;
solve ([ |- le_s IHO])
} rec lem : [ |- leg M N] -> [ |- 1leq M (succ N)] =

case le z: fn x1 =>

{ {N : [ |- nat]}x case x1 of
| x1*% : ([ |- leq z N])=* | [ |- le.s Z] =>
; solve ([ |- 1le_z]) let ihO = lem [ |- Z] in
4 let [ |- IHO] = ihO in
[ |- le_s IHO]
- le_z] =>
- le_z]




RECAP/CONCLUSION

Formalising languages makes them more robust.
Proof assistants help us prove things about languages.

Curry/Howard: Proofs are programs!

Alternate take: Proof assistants as an interactive medium for
writing programs. (Always produce well-typed programs.)

PDF of slides available: https://marcelgoh.github.io/research
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