Weyl trees of famous irrational numbers

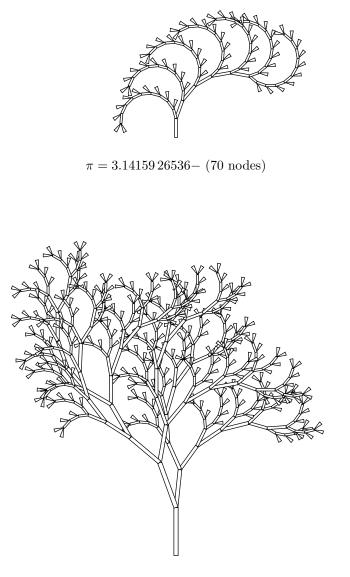
by

MARCEL K. GOH

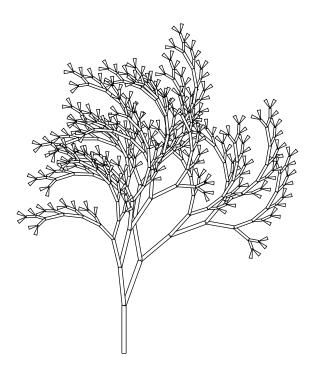
$3 {\rm \ May} \ 2020$

These trees were created by inserting the sequence $\{\theta\}, \{2\theta\}, \{3\theta\}, \ldots$ into a binary search tree, where θ is an irrational number and $\{x\}$ denotes the fractional part of x. For example, $\{\pi\} = \{0.14159\ldots\}$. External nodes are drawn as small isoceles triangles and internal nodes are drawn as rectangles. The size and angle of a given rectangle are proportional to the Horton-Strahler number of the corresponding node.

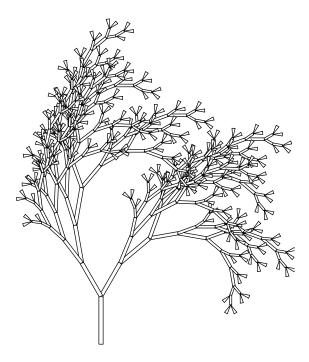
If θ is irrational, the sequence $(n\theta)$ is not periodic. However, due to PostScript's floating-point representation of real numbers, this is not true in our program. We have kept the number of nodes small enough so that this does not affect the drawings.



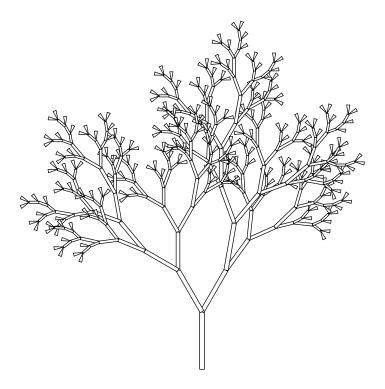
e = 2.7182818285 - (300 nodes)



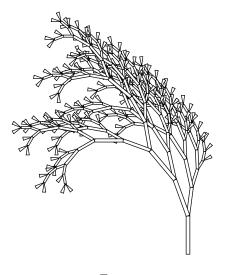
1/e = 0.3678794412 - (300 nodes)



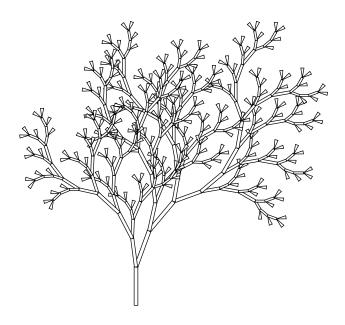
 $\gamma = 0.57721\,56649 +$ (300 nodes), possibly not irrational



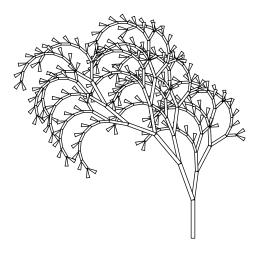
 $\sqrt{2} = 1.41421\,35624 - (250 \text{ nodes})$



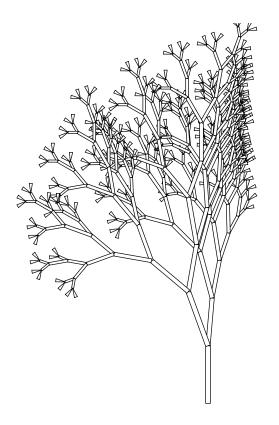
 $\sqrt{3} = 1.73205\,08076 - (200 \text{ nodes})$



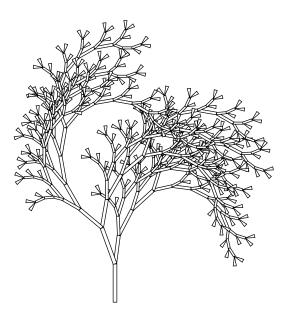
 $\sqrt{5} = 2.2360679775 - (250 \text{ nodes})$



 $\sqrt{\pi} = \Gamma(1/2) = 1.77245\,38509 + (200 \text{ nodes})$



 $\phi = 1.6180359887 + (300 \text{ nodes})$



 $\ln 2 = 0.6931471805 + (250 \text{ nodes})$