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Abstract. These expository notes give a gentle introduction to the notion

of entropy as it is used in additive combinatorics, moving at a leisurely pace

through the entropic analogues of Plünnecke’s theorem and the Balog–

Szemerédi–Gowers theorem before tackling the recent proof of the poly-

nomial Freiman–Ruzsa conjecture by W. T. Gowers, B. Green, F. Man-

ners, and T. Tao. Effort has been put into making this document as self-

contained as possible, and extra proof details have been supplied in the

hope that these notes may be accessible to the average graduate student

or enterprising undergraduate.

1. The Khintchine–Shannon axioms

Let X be a discrete random variable. Its entropy H{X} is a real number (or∞)
that measures the “information content” of X. For example, if X is a constant
random variable, then H{X} should be zero (we do not gain any information
from knowing the value of X), and if X is uniformly distributed on {0, 1}n,
then H{X} should be proportional to n, since X is determined by n bits of
information. It satisfies the following axioms, which are sometimes called the
Khinchine–Shannon axioms.

a) (Invariance.) If X takes values in A, Y takes values in B, φ : A → B is
a bijection, and P{Y = φ(a)} = P{X = a} for all a ∈ A, then H{X} =
H{Y }.

b) (Extensibility.) If X takes values in A and Y takes values in B for a set B
such that A ⊆ B, and furthermore P{Y = a} = P{X = a} for all a ∈ A,
then H{X} = H{Y }.

c) (Continuity.) The quantityH{X} depends continuously on the probabilities
P{X = a}.

d) (Maximisation.) Over all possible random variables X taking values in a
finite set A, the quantity H{X} is maximised for the uniform distribution.

e) (Additivity.) For X taking values in A and Y taking values in B, we have
the formula

H{X,Y } = H{X}+H{Y |X},

where H{X,Y } = H
{

(X,Y )
}

and

H{Y |X} =
∑

x∈A

P{X = x}H{Y |X = x}.
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The continuity axiom presupposes a topology on the set of all distributions
on the target space of X. This topology will only be important here and there,
so we will not give a complete description of it now, but simply introduce the
relevant properties as needed later on.

We shall take it on faith that there really exists a function on random vari-
ables satisfying these axioms. (It is very possible you have met the formula for
entropy somewhere on your travels, but you will not find it anywhere in these
notes.) In fact, the axioms only define entropy up to a multiplicative constant,
so we shall add the following axiom.

f) (Normalisation.) If X is uniformly distributed on {0, 1}, then H{X} = 1.

Notationally, we would expect that H{Y | X} = H{Y } if X and Y are
independent. This is the first proposition we will carefully prove, using only the
axioms. The axiomatic description above, as well as many of the proofs in this
section, are transcribed (with some adaptations here and there) from lectures
given by W. T. Gowers.

Proposition 1.1. Let X and Y be independent random variables. Then H{Y |
X} = H{Y } and consequently H{X,Y } = H{X}+H{Y }.

Proof. Suppose X takes values in a finite set A. Then for all x ∈ A, the
distribution of Y and Y given that X = x is the same, so

H{Y |X} =
∑

x∈A

P{X = x}H{Y |X = x} =
∑

x∈A

P{X = x}H{Y } = H{Y }.

The second version of the statement follows from the additivity axiom.

We will sometimes use the notation Xn to denote the vector (X1, . . . , Xn)
where the Xi are independent copies of the random variable X. We have the
following three corollaries, which are each proved by induction. The second also
requires the normalisation axiom, and the third is often known as the chain rule.

Corollary 1.2. We have H{Xn} = nH{X}.

Corollary 1.3. If X is uniformly distributed on a set of size 2n, then

H{X} = n.

Corollary 1.4 (Chain rule). Let X1, . . . , Xn be random variables. Then

H{X1, . . . , Xn} = H{X1}+H{X2 |X1}+ · · ·+H{Xn |X1, . . . , Xn−1}.

Next we establish the intuitive statement that the entropy of a uniform
random variable supported on a set A is at most the entropy of a uniform random
variable supported on a superset B of A.
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Proposition 1.5. Let A ⊆ B with B finite, let X be uniformly distributed on

A, and let Y be uniformly distributed on B. Then H{X} ≤ H{Y }, with equality

if and only if A = B.

Proof. By the extensibility axiom, H{X} is not affected if we regard X as a
function taking values in B. Then by the maximisation axiom, H{X} ≤ H{Y },
since Y is uniform on B.

If A = B, then it is clear that H{X} = H{Y }, since X and Y are the same
random variable.

On the other hand, say |A| = m and |B| = n with m < n. If m = 1,
then by the previous proposition we have H{X} = 0, and by normalisation and
invariance, H{Y } = 1. When m ≥ 2, pick k such that mk ≤ nk−1, so that
|Ak| ≤ |Bk−1|. Then by Corollary 1.2 and the inequality we showed in the first
paragraph of this proof, we have

nH{X} = H{Xn} ≤ H{Xn−1} = (n− 1)H{Y },

whence H{X} < H{Y }.

The thread connecting entropy and additive combinatorics is rather a pre-
carious one. As noted by I. Ruzsa [4], there are scenarios in which combinatorial
inequalities and their corresponding entropy ones are equivalent, scenarios in
which they both hold but their equivalence cannot be established, and further
scenarios where an inequality holds in one world but cannot (or has not) been
proven in the other.

The “dictionary” that allows us to translate statements between cardinality
inequalities and entropy inequalities is based, in part, on the following observa-
tion. (In this and the rest of the notes, lg denotes the base-2 logarithm. This
base can be changed by modifying the normalisation axiom.)

Proposition 1.6. Let X be a uniform random variable on a finite set A. Then

H{X} = lg |A|.

Proof. For any positive integer n we can let Xn denote a tuple of independent
copies of X; Corollary 1.2 tells us H{Xn} = nH{X}. Let m be such that
2m ≤ |A|n ≤ 2m+1 so that

m

n
≤ lg |A| ≤

(m+ 1)

n
.

Let Y be uniform on a set of size 2m, and let Z be uniform on a set of size
2m+1. Then by Corollary 1.3 we have H{Y } = m and H{Z} = (m + 1). Then
by Proposition 1.5 we have

m

n
≤ H{X} ≤

(m+ 1)

n
.

In other words, H{X} satisfies the same bounds as lg |A|. Taking n large, we
can make these bounds arbitrarily tight, proving the claim.

The maximisation axiom gives the following corollary.
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Corollary 1.7. Let X be a random variable supported on a finite set A. Then

H{X} ≤ lg |A|.

Hence the entropyH{X} is at most the exponential of the size of its support.
As we will see, simply replacing (logarithms of) cardinalities with entropies, we
at useful “entropic analogues” of combinatorial statements. But first, we need
more lemmas.

If Y is a random variable such that Y = f(X) for some random variable Y
and some function f , then we say that Y is determined by X or X determines Y .
We want to show that H{Y } ≤ H{X}, which reflects the idea that we get more
information from X than from Y . This, rather annoyingly, seems to require a
couple of steps.

Lemma 1.8. If Y = f(X) then H{X} = H{Y }+H{X | Y }.

Proof. There is a a bijection between values x taken by X and values
(

x, f(x)
)

taken by (X,Y ), so we have

H{X} = H{X,Y } = H{Y }+H{X | Y }

by invariance and additivity.

We are now done if we can show that entropy is nonnegative. This is a
corollary of the following lemma. The following proof is a modification of one
due to S. Eberhard.

Proposition 1.9. Let X be a discrete random variable supported on a set A
and let

a∗ = argmax
a∈A

P{X = a}.

Then

P{X = a∗} ≥ 2−H{X}.

Proof. First we will work in the case where there exists n such that P{X = a}
is a multiple of 1/n for all a ∈ A. Let Y be uniformly distributed on [n] and let
{Ea}a∈A be a partition of [n] such that |Ea| = nP{X = a} for all a ∈ A, and
let Z = a if Y ∈ Ea. This definition makes Z and X identically distributed, so
H{Z} = H{X} by the invariance axiom.

For every a ∈ A, the conditional entropy H{Y | Z = a} is uniformly dis-
tributed on a set of size |Ea|. From our choice of a∗ we have |Ea∗ | ≥ |Ea| for all
a ∈ A. Hence by Proposition 1.6, we have

H{Y | Z} =
∑

a∈A

P{X = a}H{Y |X = a} =
∑

a∈A

P{X = a} log |Ea| ≤ log |Ea∗ |.
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Since Z is determined by Y , we have H{Y } = H{Z}+H{Y |Z} by the previous
lemma. So by another invocation of Proposition 1.6, we have

H{Z} = H{Y } −H{Y | Z}

≥ log n− log |Ea∗ |

≥ log

(

n

|Ea∗ |

)

= log

(

1

P{X = a∗}

)

,

and hence 2−H{X} = 2−H{Z} ≤ P{X = a∗}.
The general case follows from the continuity axiom.

This proof came dangerously close to deriving the formula for entropy, but
we will not need any such formula, so we will refrain from mentioning it. From
the fact that P{X = a∗} ≤ 1 we can immediately conclude that entropy is
nonnegative.

Corollary 1.10. Let X be a discrete random variable taking values in a finite

set A. Then H{X} ≥ 0.

This observation completes the proof that a random variable has a smaller
entropy than one by which it is determined.

Corollary 1.11. If Y = f(X) then H{X} ≥ H{Y }.

Next we show that a random variable has zero entropy if and only if it
is constant. This reflects the idea that the variables from which we get no
information are those which take the same value no matter what.

Proposition 1.12. Let X be a discrete random variable. Then H{X} = 0 if

and only if it takes exactly one value.

Proof. First suppose that X takes only one value. Let a be the value of X such
that P{X = a} = 1. Then (X,X) equals (a, a) with probability 1 as well, so
H{X} = H{X,X} by the invariance axiom. But it can easily be checked that
X and (X,X) are independent (we have

P
{

X = a, (X,X) = (a, a)
}

= P{X = a}P
{

(X,X) = (a, a)
}

for instance), so H{X,X} = 2H{X}. Thus we conclude that H{X} = 0.
Now suppose that X takes more than one value; let A be the set of a such

that P{X = a} > 0 and let α = maxa∈A P{X = a}. For all n let Xn denote the
tuple of n independent copies of X; the maximum probability of any particular
value (in An) that Xn takes is αn. But α < 1 since X takes more than one
value, so for any ǫ > 0 we can find n such that αn < ǫ. This means that we
can partition An into two disjoint sets E and F such that P{Xn ∈ E} and
P{Xn ∈ F} are both in the range [1/2− ǫ, 1/2 + ǫ].
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Let Y be the random variable taking the value 0 if Xn ∈ E and 1 if Xn ∈ F .
Then by Corollary 1.2, H{Xn} = nH{X}, and since Xn determines Y ,

H{Xn} = H{Y }+H{Xn | Y } ≥ H{Y }.

But H{Y } > 0 for ǫ small enough, the normalisation and continuity axioms. So
H{X} ≥ H{Y }/n > 0 as well.

Mutual information. For random variables X and Y , the mutual information

I{X : Y } is defined by the equivalent formulas

I{X : Y } = H{X}+H{Y } −H{X,Y }

= H{X} −H{X | Y }

= H{Y } −H{Y |X}.

It measures, roughly speaking, how much information one can get from one
variable by looking at the other one. From the formula it is clear that I{X :
Y } = 0 if X and Y are independent. In general, we still have the inequality
I{X : Y } ≥ 0, which a corollary of the following lemma, which expresses the
intuitive fact that conditioning cannot increase the entropy of a random variable.
The proof, which is due to C. West, uses an argument similar to the one we used
to prove Proposition 1.9.

Proposition 1.13. Let X and Y be discrete random variables. Then

H{X | Y } ≤ H{X}.

Proof. Let A be the support of X and B be the support of Y . First we consider
the case that X is uniform on A (so A is finite). Then by the definition of
conditional entropy,

H{X | Y } =
∑

b∈B

P{Y = b}H{X | Y = b}.

But for each b, the random variable (X |Y = b) takes values in A, so its entropy is
bounded above by H{X} by the maximisation axiom. HenceH{X |Y } ≤ H{X}.

Next, suppose that A and B are both finite and suppose further that P{Y =
b} is rational for all b. Then there is an integer n and integers {mb}b∈B such that
P{Y = b} = mb/n for all b ∈ B. Now partition [n] into sets {Eb}b∈B , where
|Eb| = mb for all b ∈ B. We define a random variable Z by sampling uniformly
at random from Eb if Y = b, and doing so independently of (X | Y = b). The
result is a random variable Z that is uniform on [n] and which is independent
of X | Y . Furthermore, since Z determines Y , we have H{Z} = H{Y, Z} by the
invariance axiom. Hence

H{X | Y } = H{X | Y, Z}

= H{X,Y, Z} −H{Y, Z}

= H{X,Z} −H{Z}

= H{X | Z}

≤ H{X},
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where the inequality on the last line follows from the previous paragraph.
The general case follows from the continuity axiom and the fact that any

discrete random variable, regarded as a vector in l1(R), by vectors with finite
support, and these in turn can be approximated by vectors of finite support and
rational coordinates.

By the additivity axiom, the previous proposition is equivalent to

H{X,Y } ≤ H{X}+H{Y }.

and we shall use this to prove the following submodularity inequality.

Proposition 1.14 (Submodularity). Suppose X, Y , Z, andW are random vari-

ables such that (Z,W ) determines X, Z determines Y , and W also determines

Y . Then

H{X}+H{Y } ≤ H{Z}+H{W}.

Proof. The hypotheses give the three inequalities

H{X} ≤ H{Z,W}, H{Y } ≤ H{Z}, and H{Y } ≤ H{W}.

From this we see that

2H{X}+ 2H{Y } ≤ 2H{Z,W}+H{Z}+H{Y }.

But then since conditioning does not increase entropy, we have

2H{X}+ 2H{Y } ≤ 2H{Z}+ 2H{Y },

whence dividing both sides by 2 completes the proof.

The submodularity inequality is often stated in terms of a triple of random
variables in terms of the conditional mutual information, which is defined by

I{X : Y | Z} =
∑

z∈C

P{Z = z} I
{

(X | Z = z) : (Y | Z = z)
}

= H{X | Z} −H{X | Y, Z}

= H{Y | Z} −H{Y |X,Z}.

Proposition 1.15. Let X, Y , and Z be discrete random variables. Then

H{X,Y, Z}+H{Z} ≤ H{X,Z}+H{Y, Z},

which is equivalent to

I{X : Y | Z} ≥ 0.

Equality holds if and only if X and Y are independent conditional on Z.

Proof. It is clear from the additivity axiom that both sides in the first inequality
are equal to H{X} +H{Y } + 2H{Z} if and only if X and Y are independent
conditional on Z.
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To prove the first inequality, note that (X,Y, Z) is jointly determined by
(X,Z) and (Y, Z), and Z is determined by both (X,Z) and (Y, Z) separately,
then apply the previous proposition. Now by the definition of conditional mutual
information,

I{X : Y | Z} =
∑

z∈C

P{Z = z} I
{

(X | Z = z) : (Y | Z = z)
}

= H{X | Z}+H{Y | Z} −H{X,Y | Z}

= H{X,Z} − 2H{Z}+H{Y, Z} −H{X,Y, Z}+H{Z}

= H{X,Z}+H{Y, Z} −H{X,Y, Z} −H{Z},

and this proves that the first statement is equivalent to the second.

2. Group-valued random variables

Now we will examine the case where the random variables in question take values
in an abelian group G, meaning we can take sums X + Y and differences X − Y
of them. Note that if we condition on Y , then the values taken by X + Y are in
bijection with values taken by X. This leads to the following proposition.

Proposition 2.1. Let X and Y be random variables each taking finitely many

values in an abelian group G. We have

max
(

H{X},H{Y }
)

− I{X : Y } ≤ H{X ± Y }.

Furthermore, for any random variable Z, we have the conditional version

max
(

H{X | Z},H{Y | Z}
)

− I{X : Y | Z} ≤ H{X ± Y | Z}

of the same statement.

Proof. Since conditioning does not increase entropy, we have

H{X ± Y } ≥ H{X ± Y | Y },

and since the probabilities P{X + Y = z | Y = y} = P{X = z − y | Y = y} for
all z ∈ G, by invariance we have

H{X ± Y } ≥ H{X | Y } = H{X} − I{X : Y }.

Repeating the same argument but exchanging the rôles of X and Y , we get

H{X ± Y } ≥ H{Y |X} = H{Y } − I{X : Y },

so
H{X ± Y } ≥ max

(

H{X},H{Y }
)

− I{X : Y }.
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Now let Z be any random variable with finite support.

H{X ± Y | Z} =
∑

z∈G

P{Z = z}H{X ± Y | Z = z}

≥
(

max
(

H{X | Z},H{Y | Z}
)

− I{X : Y | Z}
)

∑

z∈G

P{Z = z}

= max
(

H{X | Z},H{Y | Z}
)

− I{X : Y | Z},

which completes the proof.

Corollary 2.2. If X and Y are independent, then

max
(

H{X},H{Y }
)

≤ H{X ± Y }.

Proof. The mutual information I{X : Y } is zero whenever X and Y are inde-
pendent.

Entropic Ruzsa distance. In additive combinatorics, whenever we have two
finite subsets A and B of the same abelian group, we can compute the Ruzsa
distance

d(A,B) = lg
|A−B|

√

|A| · |B|

between them. (This satisfies all the axioms of a metric except the one requiring
d(A,A) = 0 for all sets A.) This “distance” is called the Ruzsa distance as it
was first defined by I. Ruzsa [1].

The entropic analogue of the Ruzsa distance is defined as follows. For finitely
supported random variables X and Y taking values in the same abelian group,
we let X ′ and Y ′ be independent copies of X and Y , respectively, and define the
entropic Ruzsa distance by

d{X,Y } = H{X ′ − Y ′} −
H{X ′}

2
−

H{Y ′}

2
.

This definition, first established by T. Tao [5], only depends on the individual
distributions of X and Y and does not require them to have the same sample
space. When X and Y are independent, the entropic Ruzsa distance enjoys some
nice properties.

Proposition 2.3. LetX and Y be independent taking values in the same group.

Then
∣

∣H{X} −H{Y }
∣

∣ ≤ 2d{X,Y }

and

max
(

H{X − Y } −H{X},H{X − Y } −H{Y }
)

≤ 2d{X,Y }

Proof. By independence we have

2d{X,Y } = 2H{X − Y } −H{X} −H{Y }.
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Corollary 2.2 tells us that 2H{X − Y } ≥ 2H{X}, so this is at least H{X} −
H{Y }. The same corollary also says that 2H{X − Y } ≥ 2H{Y }, which allows
us to add the absolute value bars to the inequality.

The second inequality is proved using the same corollary, but only applying
it to one of the H{X − Y } terms.

Similarly to the Ruzsa distance on sets, we don’t necessarily have d{X,X} =
0, but we do have the triangle inequality, which shall now prove.

Proposition 2.4. Let X, Y , and Z be random variables with finite support in

the same abelian group. Then

d{X,Z} ≤ d{X,Y }+ d{Y, Z},

which is equivalent to

H{X ′ − Z ′} ≤ H{X ′ − Y ′}+H{Y ′ − Z ′} −H{Y ′}

for X ′, Y ′, and Z ′ independent and distributed as X, Y , and Z, respectively.

Proof. That the two statements are equivalent is easily obtained by expanding
the definition of entropic Ruzsa distance and cancelling some terms. So without
loss of generality, we may assume that that X, Y , and Z are independent and
just prove the second statement.

By submodularity, we have I
{

(X − Y : Z) |X − Z
}

≥ 0, so

0 ≤ I
{

(X − Y : Z) |X − Z
}

≤ H{X − Y |X − Z}+H{Z |X − Z} −H{X − Y, Z |X − Z}

≤ H{X − Y,X − Z}+H{Z,X − Z} −H{X − Y, Z,X − Z} −H{X − Z}.
()

Now, since the values (x−y, x−z) taken by (X−Y,X−Z) are in bijection with
values (x− z, y − z) taken by (X − Z, Y − Z) via the map (v, w) 7→ (w,w − v),
by the invariance axiom we have

H{X − Y,X − Z} = H{X − Z, Y − Z} ≤ H{X − Z}+H{Y − Z}.

Similar invocations of the invariance axiom give

H{Z,X − Z} = H{X,Z}

and
H{X − Y, Z,X − Z} = H{X,Y, Z} = H{X,Z}+H{Y },

where in the latter statement the second equality follows from the fact that
(X,Y ) and Z are independent. Substituting these three inequalities into (), we
have

0 ≤ H{X − Y }+H{Y − Z}+H{X,Z} −H{X,Z}+H{Y } −H{X − Z},
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whence
H{X − Z} ≤ H{X − Y }+H{Y − Z}+H{Y },

which completes the proof.

We also define a conditional version of the entropic Ruzsa distance. If X
and Y are G-valued random variables with finite support and Z and W are any
random variables with finite supports A and B respectively, then we define

d{X | Z;Y |W} =
∑

z∈A

∑

w∈B

P{Z = z}P{W = w}d
{

(X | Z = z); (Y |W = w)
}

.

If (X ′, Z ′) and (Y ′,W ′) are independent copies of (X,Z) and (Y,W ) respectively,
then this distance is also given by the formula

d{X | Z;Y |W} = H{X ′ − Y ′ | Z ′,W ′} −
H{X ′ | Z ′}

2
−

H{Y ′ |W ′}

2
.

The following inequality relates the conditional and unconditional versions
of Ruzsa distance.

Lemma 2.5 ([2], Lemma 5.1 ). Let (X,Z), and (Y,W ) be random variables,

with X and Y taking values in the same abelian group. Then

d{X | Z;Y |W} ≤ d{X,Y }+
1

2
I{X : Z}+

1

2
I{Y :W}.

Proof. Letting (X ′, Z ′) and (Y ′,W ′) be independent copies of the given random
variables, we expand

d{X | Z;Y |W} = H{X ′ − Y ′ | Z ′,W ′} −
H{X ′ | Z ′}

2
−

H{Y ′ |W ′}

2

≤ H{X ′ − Y ′} −
H{X ′, Z ′} −H{Z ′}

2

−
H{Y ′,W ′} −H{W ′}

2

= d{X − Y }+
H{X ′}+H{Z ′} −H{X ′, Z ′}

2

+
H{Y ′}+H{W ′} −H{Y ′,W ′}

2

= d{X − Y }+
1

2
I{X : Z}+

1

2
I{Y :W},

by independence and the fact that conditioning does not increase entropy.

The sum-difference inequality. The Ruzsa triangle inequality bounds the
size of a difference set by passing through a different subset. There is another
inequality that relates the size of a sumset with the size of a difference set. If A
and B are nonempty finite subsets of an abelian group G, then

|A+B| ≤
|A−B|3

|A||B|
.

If we replace cardinalities by exponentials of entropies, then we obtain the state-
ment of the following proposition.
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Proposition 2.6. Let X and Y be independent random variables taking values

in the same abelian group. Then

H{X + Y } ≤ 3H{X − Y } −H{X} −H{Y }.

Before we proceed to the proof, we establish the following definition, which
will be needed later in these notes as well. Let X and Y be random variables (not
necessarily independent). We say that X1 and Y1 are conditionally independent

trials of X and Y relative to Z if for all z in the range of Z, the random variables
distributed as (X1 | Z = z) and (Y1 | Z = z) are independent, (X1 | Z = z) has
the same distribution as (X | Z = z), and similarly for Y1 and Y . In particular,
if X = Y and X1 and X2 are conditionally independent trials of X relative to
Z, we have

H{X1, X2 | Z} = H{X1 | Z}+H{X2 | Z} = 2H{X | Z},

by additivity and independence. From this we obtain

H{X1, X2, Z} = 2H{X | Z}+H{Z} = 2H{X,Z} −H{Z}. ()

It is also important to observe that (X1, Z) and (X2, Z) both have the same
distributions as (X,Z).

Proof. Let (X1, Y1) and (X2, Y2) be conditionally independent trials of (X,Y )
relative to X −Y . Since (X,Y ) determines X −Y , we have X1−Y1 = X −Y =
X2−Y2. Let (X3, Y3) be another trial of (X,Y ) independent of (X1, X2, Y1, Y2).
Then

X3 + Y3 = X3 + Y3 +X1 − Y1 −X2 + Y2 = (X3 − Y2)− (X1 − Y3) +X2 + Y1,

so (X3−Y2, X1−Y3, X2, Y1) and (X3, Y3) each determine X3+Y3. On the other
hand, (X3 − Y2, X1 − Y3, X2, Y1) and (X3, Y3) together determine the sextuple
(X1, X2, X3, Y1, Y2, Y3), so by the submodularity inequality, we have

H{X1, X2, X3, Y1, Y2,Y3}+H{X3 + Y3}

≤ H{X3 − Y2, X1 − Y3, X2, Y1}+H{X3, Y3}.
()

We have
H{X3, Y3} = H{X,Y } = H{X}+H{Y }

by independence of X and Y , and since (X3, Y3) and (X1, X2, Y1, Y2) are inde-
pendent, we have

H{X1, X2, X3, Y1, Y2, Y3} = H{X1, X2, Y1, Y2}+H{X3, Y3}

= H{X1, Y1, X2, Y2, X − Y }+H{X}+H{Y }

= 2H{X,Y,X − Y } −H{X − Y }+H{X}+H{Y }

= 2H{X,Y } −H{X − Y }+H{X}+H{Y }

= 3H{X}+ 3H{Y } −H{X − Y },
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where in the third line we applied (). On the other hand,

H{X3 + Y3} = H{X + Y }

and
H{X3 − Y2,X1 − Y3, X2, Y1}

≤ H{X3 − Y2}+H{X1 − Y3}+H{X2}+H{Y1}

= 2H{X − Y }+H{X}+H{Y }.

Substituting everything into () yields

3H{X}+ 3H{Y }−H{X − Y }+H{X + Y }

≤ 2H{X − Y }+ 2H{X}+ 2H{Y },

and the desired inequality follows upon rearrangement of terms.

The entropic sum-difference inequality can also be stated in terms of entropic
Ruzsa distances; independence is not necessary here because independent trials
are baked into the definition of entropic Ruzsa distance.

Corollary 2.7. Let X and Y be discrete random variables taking values in the

same abelian group. Then

d{X,−Y } ≤ 3d{X,Y }.

3. The Plünnecke–Ruzsa inequality

In additive combinatorics, one of the most useful sumset inequalities is the fol-
lowing.

Theorem 3.1 (Plünnecke–Ruzsa inequality). Let A and B be finite subsets of

an abelian group and suppose that |A+B| ≤ K|A| for some constant K. Then

for any integers r, s ≥ 0, not both zero, we have |rB − sB| ≤ Kr+s|A|.

In this section we will develop an entropic analogue of this statement, in
which sets are replaced by random variables of finite support and cardinality is
replaced with the exponential of entropy. First, a technical lemma.

Lemma 3.2 ([2], Lemma A.1 ). Let X, Y , and Z be independent random

variables taking values in a common abelian group. Then

H{X + Y + Z} −H{X + Y } ≤ H{Y + Z} −H{Y }.

Proof. By submodularity, the quantity I{X : Z |X + Y +Z} is nonnegative, so
we have

0 ≤ I{X : Z |X + Y + Z}

= H{X,X + Y + Z}+H{Z,X + Y + Z}

−H{X,Z,X + Y + Z} −H{X + Y + Z}.
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Since X, Y , and Z are independent, we have

H{X,X + Y + Z} = H{X,Y + Z} = H{X}+H{Y + Z},

where in the first equality we use invariance. By similar reasoning we have

H{Z,X + Y + Z} = H{Z}+H{X + Y }

and

H{X,Z,X + Y + Z} = H{X}+H{Y }+H{Z}.

Plugging these three identities into the inequality above yields

0 ≤ H{X}+H{Y + Z}+H{Z}+H{X + Y }

−H{X} −H{Y } −H{Z} −H{X + Y + Z}

= H{Y + Z}+H{X + Y } −H{Z} −H{X + Y + Z},

whence the claim follows upon rearranging.

From here we are not far from proving the entropic Plünnecke–Ruzsa in-
equality, a result of T. Tao.

Theorem 3.3. Let X,Y1, . . . , Ym be independent random variables of finite

entropy taking values in an abelian group G, such that

H{X + Yi} ≤ H{X}+ logKi

for all 1 ≤ i ≤ m and some scalars K1, . . . ,Km ≥ 1. Then

H{X + Y1 + · · ·+ Ym} ≤ H{X}+ log(K1 · · ·Km).

Proof. We prove the claim by induction on m. If m = 1, then we are done by hy-
pothesis. Now suppose thatH{X+Y1+· · ·+Ym−1} ≤ H{X}+log(K1 · · ·Km−1).
Then by the previous lemma, the induction hypothesis, and the hypothesis on
H{X + Ym}, we have

H{Y1 + · · ·+ Ym−1 +X + Ym} ≤ H{Y1 + · · ·+ Ym−1 +X}

+H{X + Ym} −H{X}

≤ H{X}+ log(K1 · · ·Km−1) + logKm

≤ H{X}+ log(K1 · · ·Km),

which is what we sought to prove.

We can make this look bit more like the version of the Plünnecke–Ruzsa
inequality above by using the triangle inequality.
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Corollary 3.4 (Entropic Plunnecke–Ruzsa inequality). LetX and Y be random

variables with H{X+Y } ≤ H{X}+logK. Then for any r, s ≥ 0 not both zero,

we have

H{Y1 + · · ·+ Yr − Z1 − · · · − Zs} ≤ H{X}+ (r + s) logK,

where Y1, . . . , Yr, Z1, . . . , Zs are independent copies of Y .

Proof. By the entropic Ruzsa triangle inequality, we have

H{Y1 + · · ·+ Yr − Z1 − · · · − Zs} ≤

H{Y1 + · · ·+ Yr +X}+H{−X − Z1 − · · · − Zs} −H{−X}.

The values of −X are in bijection with values of X, and the values of −X−Z1−
· · · − Zs are in bijection with the values of X + Z1 + · · · + Zs (with the same
probabilities in both cases), so by the invariance axiom, we have

H{Y1 + · · ·+ Yr − Z1 − · · · − Zs} ≤

H{X + Y1 + · · ·+ Yr}+H{X + Z1 + · · ·+ Zs} −H{X},

and we can apply the the previous theorem twice to get

H{Y1 + · · ·+ Yr − Z1 − · · · − Zs} ≤ H{X}+ log(Kr) + log(Ks),

= H{X}+ (r + s) logK.

We conclude this section by recording two consequences of Lemma 3.2 and
will be of use in the proof of the polynomial Freiman–Ruzsa theorem.

Lemma 3.5 ([2], Lemma 5.2 ). Let X, Y , and Z be random variables taking

values in an abelian group, with Y and Z independent. Then

d{X,Y − Z} − d{X,Y } ≤
H{Y − Z} −H{Y }

2

=
1

2
d{Y, Z}+

1

4
H{Z} −

1

4
H{Y }

and

d{X;Y | Y − Z} − d{X,Y } ≤
H{Y − Z} −H{Z}

2

=
1

2
d{Y, Z}+

1

4
H{Y } −

1

4
H{Z}.

Proof. For the first inequality, let X ′ be a copy of X that is independent of
(Y, Z), so that

d{X,Y − Z} − d{X,Y } = H{X ′ − Y + Z} −
1

2
H{X ′} −

1

2
H{Y − Z}

−H{X ′ − Y }+
1

2
H{X ′}+

1

2
H{Y }.

= H{X ′ − Y + Z} −
1

2
H{Y − Z}

−H{X ′ − Y }+
1

2
H{Y }.
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Lemma 3.2 with X ′ in place of X and −Y in place of Y yields

H{X ′ − Y + Z} −H{X ′ − Y } ≤ H{Y − Z} −H{Y },

so

d{X,Y − Z} − d{X,Y } ≤
1

2
H{Y − Z} −

1

2
H{Y },

as desired. The alternate version of the statement follows directly from the
definition of Ruzsa distance, since Y and Z are independent.

For the other inequality, we apply Lemma 2.5 with W = Y − Z (and the
variable Z in that lemma set to anything that is independent of X) to obtain

d{X;Y | Y − Z} − d{X,Y } ≤
1

2
I{Y : Y − Z}

=
1

2

(

H{Y }+H{Y − Z} −H{Y, Y − Z}
)

=
1

2

(

H{Y }+H{Y − Z} −H{Y, Z}
)

=
1

2

(

H{Y − Z} −H{Z}
)

,

where in the last line we used independence of Y and Z. Independence also gives
the alternative version of the right-hand-side expression.

Changing variables in the first inequality and then adding the second in-
equality gives us the following.

Lemma 3.6 ([2], Lemma 7.1 ). Let X, Y , Z, andW be random variables taking

values in the same abelian group, with Y , Z, and W independent. Then

d{X;Y − Z | Y − Z −W} − d{X,Y }

≤
1

2

(

H{Y − Z −W}+H{Y − Z} −H{Y } −H{W}
)

.

Proof. The second inequality of Lemma 3.5 (setting Y ← Y − Z and Z ← W )
yields

d{X;Y − Z | Y − Z −W} − d{X,Y − Z} ≤
H{Y − Z −W} −H{W}

2
,

and the first inequality (without any change of variables) is

d{X,Y − Z} − d{X,Y } ≤
H{Y − Z} −H{Y }

2
.

Adding these two inequalities proves the lemma.
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4. The Balog–Szemerédi–Gowers theorem

If A and B are subsets of the same abelian group such that |A+B| is much smaller
than |A| · |B|, then it stands to reason that there must be a lot of redundancy
in A + B; that is, many elements of A + B can be expressed as a + b in lots of
different ways. To capture this notion, we can define the additive energy between
two sets A and B to be

E(A,B) =
∣

∣

{

(a, a′, b, b′) ∈ A×A×B ×B : a+ b = a′ + b′
}∣

∣.

We now define an entropic version of E(A,B). Let X and Y be discrete
random variables taking values in the same abelian group. Let (X1, Y1) and
(X2, Y2) be conditionally independent trials of (X,Y ) relative to X + Y . These
X1 + Y1 = X2 + Y2 = A+B. The entropic additive energy between X and Y is

e{X,Y } = H{X1, Y1, X2, Y2}.

This definition makes clear the analogy between this value and the additive
energy of sets, but by conditional independence and the fact that (X1, Y1, X2, Y2)
determines X1 + Y1 = X + Y , we can rewrite

e{X,Y } = H{X1, Y1, X2, Y2, X + Y }

= 2H{X,Y,X + Y } −H{X + Y }

= 2H{X,Y } −H{X + Y },

where in the second equality we applied (). This formula is something we will
use often, as it makes no direct mention of the variables (X1, Y1) and (X2, Y2).

Quantifying the idea that small sumset must imply large additive energy,
we have the following proposition.

Proposition 4.1. Let A and B be finite subsets of an abelian group. If |A+B| ≤
K|A|1/2|B|1/2 for some constant K, then we have

E(A,B) ≥
1

K
|A|3/2|B|3/2.

Somewhat surprisingly, if we convert these statements into their entropic
analogues in the näive way, as we’ve been doing, the implication goes the other
way! However, we have a weak equivalence (with worse constants in one direc-
tion) under the further assumption that the random variables in question are
not too dependent.

Proposition 4.2. Let X and Y be discrete random variables taking values in

the same abelian group. If

e{X,Y } ≥
3

2
H{X}+

3

2
H{Y } − logK, ()
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for some constant K, then

H{X + Y } ≤
1

2
H{X}+

1

2
H{Y }+ logK. ()

If one adds the further assumption that H{X,Y } ≥ H{X}+H{Y }−C, then ()
implies () with a worse constant, namely, we may only conclude

e{X,Y } ≥
3

2
H{X}+

3

2
H{Y } − logK − 2C. ()

In particular, if X and Y are independent, then we can recover () from ().

Proof. Assuming the lower bound on the additive energy, we have

2H{X,Y } −H{X + Y } ≥
3

2
H{X}+

3

2
H{Y } − logK,

so

H{X + Y } ≤ 2H{X,Y } −
3

2
H{X} −

3

2
H{Y }+ logK

≤ 2H{X}+ 2H{Y } −
3

2
H{X} −

3

2
H{Y }+ logK

=
1

2
H{X}+

1

2
H{Y }+ logK.

On the other hand, assuming this upper bound on H{X + Y }, we have

e{X,Y } = 2H{X,Y } −H{X + Y }

≥ 2H{X,Y } −
1

2
H{X} −

1

2
H{Y } − logK,

and if 2H{X,Y } ≥ 2H{X}+ 2H{Y } − 2C, then () follows directly.

The fact that the implication goes the “wrong” way may seem somewhat
baffling. Let us get to the bottom of this. If A and B are subsets of a finite
abelian group, we can let X and Y be the uniform distributions on A and B,
respectively. We have been operating under the belief that H{X + Y } should
correspond (up to taking powers or logarithms) to the size of A + B. But this
is not true, since X and Y may be given a joint distribution that is not uniform
on A×B, even if its marginals are uniform on A and B.

For example, let A and B be subsets of G and consider any regular bipartite
graph H on the vertex set A∪B. Let (X,Y ) be defined by sampling an edge from
H uniformly at random, letting X be its endpoint in A and Y be its endpoint
in B. Since the graph is regular, X is uniform on A and Y is uniform on B, but
X + Y can only take values a + b where (a, b) is an edge of H. In other words,
X + Y samples from the partial sumset

A+H B =
{

a+ b : (a, b) ∈ E(H)
}

,
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where elements that are represented more times as the sum of edge endpoints
are given a greater weight. The way to properly recover the ordinary sumset
A+B is to let H be all of A×B, in which case X and Y are independent. The
extra assumption we added in Proposition 4.2 is analogous to stipulating that
|H| ≥ K|A| · |B|, so that the resulting X and Y are “nearly” independent.

Simply put, in the entropic setting the bound () is stronger than () because
the entropyH{X,Y } of the joint distribution appears in the formula for e{X,Y },
whereas () says nothing whatsoever about this joint distribution.

The converse to Proposition 4.1 does not hold in general; that is, large
additive energy does not necessarily imply a small sumset. However, there does
exist a partial converse, which says that if sets A and B have a large additive
energy, then there are dense subsets A′ ⊆ A and B′ ⊆ B such that the sumset
|A+B| is small. This is the celebrated Balog–Szemerédi–Gowers theorem.

Theorem 4.3 (Balog–Szemerédi–Gowers theorem). Let A be a finite subset of

an abelian group with E(A,B) ≥ c|A|3/2|B|3/2. Then there are subsets A′ ⊆ A
and B′ ⊆ B with |A′| ≥ c′|A| and |B′| ≥ c′′|B| such that

|A′ +B′| ≤ C|A|1/2|B|1/2,

where c′, c′′, and C depend only on c.

In the entropy setting, the operation on random variables that corresponds
to taking subsets is conditioning. (As a sanity check, recall that conditioning
never increases entropy, just as taking subsets never increases cardinality.) The
Balog–Szemerédi–Gowers theorem gives us subsets between which we can take
a bona fide sumset, so its entropic analogue should return conditionings X ′ and
Y ′ of X and Y relative to some random variable Z, such that

i) X ′ and Y ′ are conditionally independent relative to Z;

ii) the entropies H{X ′ |Z} and H{Y ′ |Z} are not too small compared to their
unconditioned analogues; and

iii) H{X ′ + Y ′ | Z} is small.

In fact, the conditioning we shall perform is exactly the one used to define
additive energy.

First, we need a lemma, which we state separately since it will also be used
later in the proof of the polynomial Freiman–Ruzsa theorem.

Lemma 4.4 ([2], Lemma A.2 ). Let X and Y be discrete random variables tak-

ing values in the same abelian group. Let (X1, Y1) and (X2, Y2) be conditionally
independent trials of (X,Y ) relative to X + Y . Then we have

max
(

H{X1 −X2},H{X1 − Y2}
)

≤ H{X + Y }+ 2 I{X : Y }.

The right-hand side of this expression can also be written 2H{X}+ 2H{Y } −
e{X,Y }.

Proof. First we perform the proof for X1 − Y2. Submodularity gives us

H{X1, Y1, X1 − Y2}+H{X1 − Y2} ≤ H{X1, X1 − Y2}+H{Y1, X1 − Y2}.
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Since X1 + Y1 = X + Y = X2 + Y2, given (X1, Y1, X1 − Y2) we can recover the
values of X2 and Y2. So (X1, Y1, X1 − Y2) and (X1, Y1, X2, Y2) determine each
other and hence

H{X1, Y1, X1 − Y2} = H{X1, Y1, X2, Y2} = 2H{X,Y } −H{X + Y }.

On the other side of the inequality, we have

H{X1, X1 − Y2} = H{X1, Y2} ≤ H{X}+H{Y },

and similarly

H{Y1, X1 − Y2} = H{Y1, X2 − Y1} = H{X2, Y1} ≤ H{X}+H{Y }.

Therefore,

H{X1 − Y2} ≤ H{X + Y } − 2H{X,Y }+ 2H{X}+ 2H{Y }

= H{X + Y } − I{X : Y }.

The same holds with Y2 replaced by X2.

Theorem 4.5 (Entropic Balog–Szemerédi–Gowers theorem). Let X and Y be

discrete random variables taking values in the same abelian group, and suppose

that

e{X,Y } ≥
3

2
H{X}+

3

2
H{Y }+ logK

for some constant K. Then letting (X1, Y1) and (X2, Y2) be conditionally inde-

pendent trials of (X,Y ) relative to X + Y , we have

H{X1 |X + Y } ≥ H{X} − 2 logK

and

H{Y2 |X + Y } ≥ H{Y } − 2 logK.

Furthermore, the variables X1 and Y2 are conditionally independent relative to

X + Y , and we have

H{X1 + Y2 |X + Y } ≤
1

2
H{X}+

1

2
H{Y }+ logK.

Proof. Using the coupling X + Y = X1 + Y1 = X2 + Y2, we have

H{X1 |X + Y } = H{X1, X1 + Y1} −H{X + Y }

= H{X,Y } −H{X + Y }

= e{X,Y } −H{X,Y }

≥
3

2
H{X}+

3

2
H{Y } − logK −H{X,Y }

≥
1

2
H{X}+

1

2
H{Y } − logK.
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where in the fourth line we used the hypothesis on e{X,Y }, and in the last line
we observed that H{X}+H{Y } −H{X,Y } ≥ 0. The bound

H{Y2, X + Y } ≥
1

2
H{X}+

1

2
H{Y } − logK

is shown in the exact same way; only the first step differs.
Now, taking the sum of both these bounds, we arrive at

H{X1 |X + Y }+H{Y2 |X + Y } ≥ H{X}+H{Y } − 2 logK.

From this one deduces

H{X1 |X + Y } ≥ H{X}+H{Y2} −H{Y2 |X + Y } − 2 logK

≥ H{X} − 2 logK.

The corresponding lower bound on H{Y2 |X + Y } is proved similarly.
It remains to prove the upper bound on H{X1 + Y2 | X + Y }. Note that

(X1, Y2, X +Y ) and (X1−X2, X +Y ) jointly determine (X1, X2, X +Y ). Then
given X1 −X2 and X + Y we can calculate

X1 + Y2 = X1 −X2 +X2 + Y2 = (X1 −X2) + (X + Y ),

so (X1, Y2, X+Y ) and (X1−X2, X+Y ) each separately determine (X1+Y2, X+
Y ). Hence the submodularity inequality yields

H{X1, X2, X+Y }+H{X1+Y2, X+Y } ≤ H{X1, Y2, X+Y }+H{X1−X2, X+Y }.

From (X1, X2, X+Y ) we can calculate Y1 = X+Y −X1 and Y2 = X+Y −X2,
so this triple and the triple (X1, X2, Y1, Y2) determine each other. So the first
term above is simply the additive energy between X and Y ; that is

H{X1, X2, X + Y } = H{X1, X2, Y1, Y2} = 2H{X,Y } −H{X + Y }.

Now since X1 and Y2 are conditionally independent relative to X + Y , we have

H{X1, Y2, X + Y } = H{X1, X + Y }+H{Y2, X + Y } −H{X + Y }

= H{X,X + Y }+H{Y,X + Y } −H{X + Y }

= 2H{X,Y } −H{X + Y }

For the last term above we split

H{X1 −X2, X + Y } = H{X1 −X2 |X + Y } −H{X + Y }.

Putting everything together, we obtain

2H{X,Y } −H{X+Y }+H{X1 + Y2, X + Y }

≤ 2H{X,Y }+H{X1 −X2 |X + Y } − 2H{X + Y },
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so that

H{X1 + Y2 |X + Y } ≤ H{X1 −X2 |X + Y } − 2H{X + Y } ≤ H{X1 −X2}.

The previous lemma then gives

H{X1 + Y2 |X + Y } ≤ 2H{X}+ 2H{Y } − e{X,Y },

and from our lower bound on e{X,Y }, we conclude that

H{X1 + Y2 |X + Y } ≤
1

2
H{X}+

1

2
H{Y }+ logK,

which is what we wanted to show.

Let us also extract the specific consequence of Lemma 4.4 that we need for
the polynomial Freiman–Ruzsa theorem.

Lemma 4.6. Let X and Y be G-valued random variables, let Z = X + Y , and

let C denote the support of Z. Then

∑

z∈C

P{Z = z}d
{

(X | Z = z); (Y | Z = z)
}

≤ 2 I{X : Y }+ 2H{Z} −H{X,Y }.

Proof. Let (X1, Y1) and (X2, Y2) be as in the proof of Lemma 4.4. Note that
X1 and Y2 are conditionally independent copies of X and Y relative to Z, so it
suffices to show that

H{X1 − Y2 | Z} −
1

2
H{X1 | Z} −

1

2
H{Y2 | Z}

≤ 2 I{X : Y }+ 2H{Z} −H{X,Y }.
()

Lemma 4.4 tells us that H{X1 − Y2} ≤ H{Z}+ 2 I{X : Y }, so that

H{X1 − Y2 | Z} ≤ H{Z}+ 2 I{X : Y }, ()

since conditioning does not increase entropy. Then we expand

H{X1 | Z} = H{X1, X1 + Y1} −H{Z} = H{X,Y } −H{Z}, ()

and H{Y2 | Z} is equal to this quantity as well. Subtracting () from () gives
us (), which completes the proof.

5. The Freiman–Ruzsa theorem

Both Plünnecke’s theorem and the Balog–Szemerédi–Gowers theorem have to do
with the ratio |A + A|/|A| of a finite set A. Let us now give this ratio a name.
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It is called the doubling constant of A. Plünnecke’s theorem says that if the
doubling constant is at most K, then the ratio |rA − sA|/|A| is at most Kr+s.
The Balog–Szemerédi–Gowers theorem, on the other hand, says that sets A with
large additive energy contain large subsets A and A′′ such that |A′ +A′′|/|A| is
bounded from above by some constant.

It is natural to ask whether there is some way to characterise the structure
of sets A with small doubling constant (in some asymptotic sense). One reason
why A might have |A+A| ≤ K|A| is if A is contained in some subgroup H, since
subgroups are closed under addition. If H is not much larger than A, then this
would explain why the doubling constant of A is small. It turns out that the
converse of this statement holds; that is, if A has small doubling constant, then
it has high density as a subset of a subgroup. This is called the Freiman–Ruzsa
theorem.

Theorem 5.1 (Freiman–Ruzsa theorem). Let A ⊆ G = (Z/rZ)n and suppose

that |A + A| ≤ K|A|. Then there is a subgroup H of G such that A ⊆ H and

|H| ≤ K ′|A|, where K ′ depends only on K and r.

But subspaces may not be a very efficient way of covering sets with small
doubling. One can easily cook up examples where there is enough linear inde-
pendence in A so that the smallest subspace containing A has size exponential
in |A|, but A still has small doubling.

On the other hand, in the extreme case that the doubling constant of A is
1, then the structure of A is completely determined, as shown by the following
proposition.

Proposition 5.2. Let A be a finite subset of an abelian group G. If |A+A| =
|A|, then A is a coset of a subgroup H.

Proof. First we assume that A contains 0. Then

A = A+ {0} ⊆ A+A,

but since |A + A| = |A| this implies that A + A = A. Now let H = {h ∈ G :
A + h = A. The above observation shows that A ⊆ H. But if h ∈ H, then
A = A+ h contains the element 0 + h = h, so in fact H = A.

If x, y ∈ H, then A + x = A and A + y = A, so subtracting y from both
sides of the second identity we obtain A− y = A, and adding x to both sides of
this, we get

A+ x− y = A+ x = A,

so x− y ∈ H. This along with the fact that 0 ∈ H shows that H is a subgroup
of G.

Thus in the case where A contains 0, we see that A is actually a subgroup
of G, and in the general case we may translate A without changing |A + A|, so
A is the translate of a subgroup; that is, A is a coset of H.
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So in the case that A is a union of not too many cosets, we also expect A+A
to be quite small, since each individual coset does not grow under addition (the
only possible growth comes from additions between cosets).

It is believed that the converse of this statement holds and yields a more
efficient version of the Freiman–Ruzsa theorem; that is, if A has doubling con-
stant bounded above by K, then A is contained in a union of cosets, where the
number of cosets needed can be taken to be no more than polynomial in the
doubling constant. This conjecture is due to K. Marton.

Conjecture 5.3. Let A ⊆
(

Z/rZ
)n

have |A+A| ≤ K|A| for some constant K.

Then there is a subgroup H with |H| ≤ |A| such that A is contained in a union

of KC cosets of H, where C is a constant that can depend on r but not on n or

K.

In 2023, the first special case of this conjecture was proved by W. T. Gowers,
B. Green, F. Manners, and T. Tao.

Theorem 5.4 (Gowers–Green–Manners–Tao, 2023). There is a constant C
such that the following holds. Let A ⊆ Fn

2 have |A+A| ≤ K|A| for some constant

K. Then there is a subgroup H with |H| ≤ |A| such that A is contained in a

union of 2KC cosets of H.

The reason we need the factor of two is that if A is almost all of a subgroup,
then K is very close to 1 and the largest subgroup of Fn

2 has cardinality just
slightly above half that of A. That creates the possibility that KC is much less
than 2, making it impossible to satisfy the statement of the conjecture. Adding
the factor of two solves this issue because if A ⊆ H0 with |A| ≥ (1− ǫ)|H0|, then
we may take a subgroup H of H0 of index 2 and cover A by two cosets of H.

The proof of this theorem will occupy the remainder of these notes. As a
first step, we shall show that Theorem 5.4 follows from an entirely information-
theoretic statement. In this and the rest of the notes, for A finite we use the
notation UA to denote the random variable that is uniform on A.

Theorem 5.5. There is a constant C ′ such that the following holds. LetG = Fn
2

and let X∗
1 and X∗

2 be random variables taking values in G. There is some

subgroup H ⊆ G such that

d{X∗
1 , UH}+ d{X∗

2 , UH} ≤ C
′ d{X∗

1 , X
∗
2}.

In the proof that this theorem implies the previous one, we shall need the
Ruzsa covering lemma, whose proof is short enough that we include it for com-
pleteness.

Lemma 5.6 (Ruzsa covering lemma). Let G be an abelian group and let A and

B be finite subsets of G. Then there is a set L ⊆ A of size at most |A+B|/|B|
such that A ⊆ L+B −B.

Proof. Let L = {a1, . . . , al} be a maximal subset of A with the property that the
sets ai+B are disjoint. For all a ∈ A there is i such that (a+B)∩ (ai+B) 6= ∅,
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otherwise we could add a to L and contradict maximality. Equivalently, we can
find b and b′ such that a+ b = ai + b′ so a ∈ ai +B−B. Hence A ⊆ L+B−B.
Lastly, |L| · |B| = |K +B| ≤ |A+B|.

We now show that if Theorem 5.5 holds for some constant C ′, then Theo-
rem 5.4 holds with C = C ′ + 1.

Proof of Theorem 5.4 assuming Theorem 5.5. Let A ⊆ Fn
2 and K ≥ 1 such that

|A + A| ≤ K|A|. Let UA be the uniform distribution on A, so that H{UA} =
lg |A|. Letting U ′

A and U ′′
A be two independent copies of UA, the sum U ′

A − U
′′
A

belongs to |A+A|, so H{U ′
A + U ′′

A} ≤ lg |A+A|, and we have

d{UA, UA} = H{U ′
A + U ′′

A} −H{UA} ≤ lg |A+A| − lg |A| ≤ lgK,

since U ′
A+U ′′

A = U ′
A−U

′′
A in Fn

2 . By Theorem 5.5, we can find H ⊆ G such that

2d{UA, UH} ≤ C
′ lgK,

where UH is taken to be uniform on H independently of UA. Independence and
the definition of Ruzsa distance let us conclude

H{UA − UH} ≤
lg |A|+ lg |H|+ C ′ lgK

2
,

from which applying Proposition 1.9 allows us to procure some x0 ∈ Fn
2 such

that

P{UA − UH = x0} ≥
1

|A|1/2|H|1/2KC′/2
.

Since UA and UH are uniformly and independently random on A and H respec-
tively, we rewrite this as

∣

∣A ∩ (H + x0)
∣

∣

|A| · |H|
≥

1

|A|1/2|H|1/2KC′/2
,

whence
∣

∣A ∩ (H + x0)
∣

∣ ≥
|A|1/2|H|1/2

KC′/2
.

By the Ruzsa covering lemma applied to the sets A and A ∩ (H + x0), there is
a set L ⊆ A of size

|L| ≤

∣

∣A+ (A ∩ (H + x0))
∣

∣

∣

∣A ∩ (H + x0)
∣

∣

≤
|A+A|

∣

∣A ∩ (H + x0)
∣

∣

≤
K|A| ·KC′/2

|A|1/2|H|1/2

=
KC′/2+1|A|1/2

|H|1/2
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such that

A ⊆ L+
(

A ∩ (H + x0)
)

−
(

A ∩ (H + x0)
)

⊆ L+H.

Proposition 2.3 tells us that

∣

∣lg |H| − lg |A|
∣

∣ =
∣

∣H{UH} −H{HA}
∣

∣ ≤ 2d{UA, UH} ≤ C
′ lgK,

so

max

(

|H|

|A|
,
|A|

|H|

)

≤ KC′

and we have
|L| ≤ KC′+1.

If |H| ≤ |A| then we are done (and the factor of 2 is unnecessary in the theorem
statement), since A is a subset of |L| cosets of H.

If not, then we can pick a subgroup H ′ of H with |A|/2 ≤ |H ′| ≤ |A| by
iteratively taking hyperplanes until the condition is met. The group H may be
covered by |H|/|H ′| ≤ 2|H|/|A| translates of H ′, so A can be covered by

2|H|

|A|
|L| ≤

2|H|

|A|
·
KC′/2+1|A|1/2

|H|1/2
= 2KC′/2+1 |H|

1/2

|A|1/2
≤ 2KC′+1

translates of H ′.

6. A compactness argument

We have reduced the proof of the Freiman–Ruzsa theorem to proving the inform-
ation-theoretic Theorem 5.5. In this section, we shall reduce the proof to a
different statement via a compactness argument. First we recall some basic
topological properties of probability measures.

Fix a finite set G of size n. Ordering the elements of G from 1 to n, one can
associate to each probability distribution µ on G the vector

(

µ({1}), µ({2}), . . . , µ({n})
)

in Rn. (Starting now we will write µi instead of µ({i}).) Let P(G) denote the
set of all probability distributions on G. This is a metric space under the total

variation distance dTV, where if µ = (µ1, . . . , µn) and ν = (ν1, . . . , νn) are two
probability distributions on G, then

dTV(µ, ν) =
n
∑

i=1

|µi − νi|.

Regarding the space as a subset of Rn, this norm is equivalent to the L1 norm;
hence the total variation metric on P(G) is equivalent to the Euclidean metric on
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Rn. Since probabilities are in [0, 1], the space P(G) is a subset of the closed set
[0, 1]n, and since P(G) is the inverse image of the set {1} under the continuous
function

(x1, . . . , xn) 7→ x1 + · · ·+ xn,

we conclude that P(G) is a compact topological space. In passing, we note here
that this is the topology under which the continuity axiom asserts that H{X}
is continuous.

Next we show that the Ruzsa distance is also continuous with respect to this
topology.

Proposition 6.1. Let G be a finite abelian group. The Ruzsa distance d,

regarded as a functional from P(G)× P(G)→ R, is continuous.

Let X and Y be random variables; without loss of generality, we may assume
they are independent, so that

d{X,Y } = H{X − Y } −
H{X}

2
−

H{Y }

2
.

The entropy functional is continuous by axiom, so from here it suffices to show
that the function f : P(G) × P(G) → P(G) mapping (X,Y ) 7→ X − Y is
continuous.

Since all norms on finite-dimensional spaces are equivalent, we may work
with P(G) × P(G) and P(G) as normed spaces using the L1 norm on R2n and
Rn respectively. Let µg = P{X = g}, νg = P{Y = g}, and ξg = P{X − Y = g}
for all g ∈ G. Given another pair (X ′, Y ′) of random variables, define µ′

g, ν
′
g, and

ξ′g accordingly. Now let ǫ > 0 and suppose that the vectors (µ, ν) and (µ′, ν′)

have
∣

∣

∣

∣(µ, ν), (µ′, ν′)
∣

∣

∣

∣

1
< δ for some δ > 0 to be specified later; writing this out

in full, we have

∑

g∈G

(

|µg − µ
′
g|+ |νg − νg|

)

< δ.

Observe that

ξg = P{X − Y = g} =
∑

h∈G

P{X = g + h}P{Y = h} =
∑

h∈G

µg+hνh
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and similarly for ξ′g. From this we can expand and bound

||ξ, ξ′||1 =
∑

g∈G

|ξg − ξ
′
g|

=
∑

g∈G

∣

∣

∣

∑

h∈G

µg+hνh −
∑

h∈G

µg+hνh

∣

∣

∣

≤
∑

g∈G

∑

h∈G

(

|µg+hνh − µ
′
g+hνh|+ |µ

′
g+hνh − µ

′
g+hν

′
h|
)

=
∑

h∈G

νh
∑

g∈G

|µg+h − µ
′
g+h|+

∑

g∈G

µg

∑

h∈G

|νh − ν
′
h|

=
∑

g∈G

|µg − µ
′
g|+

∑

h∈G

|νh − ν
′
h|

< δ,

so in fact we can set δ = ǫ.

So much for topology. Returning to entropies, we now prove an entropic
version of Proposition 5.2.

Proposition 6.2. Let X be a random variable taking values in an abelian group

G. Then d{X,−X} = 0 if and only if X is uniformly distributed on a coset of

a finite subgroup of G.

Proof. If X is the uniform distribution on a coset a + H of a finite subgroup
H, then letting X ′ be an independent copy of X, the random variable X +X ′

is uniform on the coset a + a + H, which has the same size as |a + H|, so
H{X +X ′} = H{X}, meaning that

d{X,−X} = H{X +X ′} −
H{X}

2
−

H{X ′}

2
= 0.

On the other hand, suppose that H{X +X ′} = 2H{X}, where X ′ is an inde-
pendent copy of X. Then

H{X +X ′} = 2H{X} −H{X}

= H{X,X ′} −H{X ′}

= H{X +X ′, X ′} −H{X ′}

= H{X +X ′ |X ′},

so X +X ′ is independent of X ′.
Let A denote the support of X. We have shown that the distribution (X +

X ′ |X ′ = x) is the same regardless of our choice of x ∈ A. Then for all x, y ∈ A,
the distribution of X + x is the same as that of X + y, so the distribution of
of X + x − y is the same as that of X. This implies that A is finite, X is the
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uniform distribution on A, and adding an element h ∈ A−A to the set A simply
permutes the set.

As in the proof of Proposition 5.2, let H = {h ∈ G : A + h = A}. We
proved back then that H is a subgroup of G, and the conclusion of the previous
paragraph asserts that A−A ⊆ H. But letting h ∈ H, the fact that h+A = A
implies that h ∈ A − A. We conclude that A − A is a finite subgroup of G,
whence A is a coset of a finite subgroup of G.

From this, we are able to prove the special case of Theorem 5.5 in which the
Ruzsa distance between the two given random variables is zero.

Lemma 6.3. Let X1 and X2 be random variables taking values in Fn
2 with

d{X1, X2} = 0. Then there exists a subgroup H of Fn
2 such that

d{X1, UH} = d{X2, UH} = 0.

Proof. The triangle inequality gives d{X1, X1} = 0, and since −x = x in Fn
2 ,

we also have d{X1,−X1} = 0. By the previous proposition, there is a coset S
of a subgroup H such that X1 has the same distribution as US . So

d{X1, UH} = H{US − UH} −
1

2
H{US} −

1

2
H{UH} = 0,

since US − UH is uniform on S and |H| = |S|. Then by the triangle inequality
once again, d{X2, UH} = 0 as well.

Recall that in the previous section, we reduced the proof of the polynomial
Freiman–Ruzsa theorem to a statement involving some random variables X∗

1 and
X∗

2 . For the remainder of these notes, we shall consider these variables to be
fixed, and we also fix η = 1/9 for short. Defining the functional

τ(X1, X2) = d{X1, X2} − η d{X
∗
1 , X1} − η d{X

∗
2 , X2},

we can then reduce the proof of Theorem 5.5 (and consequently the entire proof)
to showing the following proposition.

Proposition 6.4. Let X1 and X2 be two Fn
2 -valued random variables with

d{X1, X2} > 0. Then there are Fn
2 -valued random variables X ′

1 and X ′
2 such

that

τ{X ′
1, X

′
2} < τ{X1, X2}.

If we can prove this proposition, then we have Theorem 5.5 with a certain
constant C ′ which shall be made explicit during the proof.

Proof of Theorem 5.5 assuming Proposition 6.4. We proved earlier that P(Fn
2 )

is a compact topological space, thus so is its Cartesian product with itself. By
Proposition 6.1, the Ruzsa distance functional is continuous on this space, which
implies that τ is as well. Hence τ attains its infimum on the space P(Fn

2 )
2;

let X1 and X2 be two distributions such that τ{X1, X2} is minimal. By the
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contrapositive of Proposition 6.4, we must have d{X1, X2} = 0, so by Lemma 6.3,
there exists a subgroup H of Fn

2 such that

d{X1, UH} = d{X2, UH} = 0.

This means that

d{X∗
1 , UH} ≤ d{X∗

1 , X1}+ d{X1, UH} = d{X∗
1 , X1}

and
d{X∗

1 , X1} ≤ d{X∗
1 , UH}+ d{UH , X1} = d{X∗

1 , UH},

so d{X∗
1 , UH} = d{X∗

1 , X1}. The same holds for X∗
2 and X2. Then since

d{X1, X2} = 0 and by minimality of τ{X1, X2}, we obtain

η d{X∗
1 , UH}+ η d{X∗

2 , UH} = η d{X1, UH}+ η d{X2, UH}

= τ{X1, X2}

≤ τ{X∗
1 , X

∗
2}

= d{X∗
2 , X

∗
1}+ η d{X∗

1 , X
∗
2}+ η d{X∗

2 , X
∗
1}

= (1 + 2η)d{X∗
1 , X

∗
2}.

From our choice of η = 1/9 we can multiply both sides by 9 to get

d{X∗
1 , UH}+ d{X∗

2 , UH} ≤ 11d{X∗
1 , X

∗
2},

and furthermore, since

∣

∣d{X∗
1 , UH} − d{X∗

2 , UH}
∣

∣ ≤ d{X∗
1 , X

∗
2}

by two invocations of the triangle inequality, neither d{X∗
1 , UH} nor d{X

∗
2 , UH}

can be greater than 6d{X∗
1 , X

∗
2}.

For posterity, let us restate what we have just proved with the constants
plugged in.

Theorem 5.5′. Let X∗
1 and X∗

2 be random variables taking values in Fn
2 . There

is some subgroup H ⊆ Fn
2 such that

d{X∗
1 , UH}+ d{X∗

2 , UH} ≤ 11d{X∗
1 , X

∗
2},

and furthermore,

max
(

d{X∗
1 , UH},d{X

∗
2 , UH}

)

≤ 6d{X∗
1 , X

∗
2}.

7. Entropy distance under homomorphisms

Our goal has been reduced to showing that if X1 and X2 have d{X1, X2} > 0,
then there exist X ′

1 and X ′
2 with τ{X ′

1, X
′
2} < τ{X1, X2}. Remember that the



MARCEL K. GOH 31

fixed variables X∗
1 and X∗

2 still play a rôle in this statement, since they feature
in the definition of the functional τ .

We have elected to first prove all the technical lemmas then stitch them
into a complete proof. We employ this “bottom-up” approach not because it is
necessarily more natural, but because the original proof is written in a rather
“top-down” style, and the reader may find it enlightening to have both exposi-
tions at his or her disposal.

Having said this, the remainder of this section will be devoted to the study
of how entropy behaves under homomorphism. This appeared as Proposition 1.4
in [3], and reproved in [2] with the explicit error term shown below.

Proposition 7.1 ([2], Proposition 4.1 ). Let π : G → G′ be a homomorphism

of abelian groups and let Z1 and Z2 be G-valued random variables. Then

d{Z1, Z2} ≥ d
{

π(Z1), π(Z2)
}

+ d
{

Z1 | π(Z1);Z2 | π(Z2)
}

.

If Z1 and Z2 are assumed to be independent, then the two sides differ by

I
{

Z1 − Z2 :
(

π(Z1), π(Z2)
) ∣

∣ π(Z1 − Z2)
}

.

Proof. Let Z ′
1 and Z ′

2 be independent copies of Z1 and Z2. Then

d
{

Z1|π(Z1);Z2 | π(Z2)
}

= H
{

Z ′
1 − Z

′
2 | π(Z

′
1), π(Z

′
2)
}

−
1

2
H
{

Z ′
1 | π(Z

′
1)
}

−
1

2
H
{

Z ′
2 | π(Z

′
2)
}

≤ H
{

Z ′
1 − Z

′
2 | π(Z

′
2)
}

−
1

2
H
{

Z ′
1 | π(Z

′
1)
}

−
1

2
H
{

Z ′
2 | π(Z

′
2)
}

= H
{

Z ′
1 − Z

′
2 | π(Z

′
1 − Z

′
2)
}

−
1

2
H
{

Z ′
1 | π(Z

′
1)
}

−
1

2
H
{

Z ′
2 | π(Z

′
2)
}

= H{Z ′
1 − Z

′
2} −H

{

π(Z ′
1 − Z

′
2)
}

+
1

2
H{Z ′

1} −
1

2
H
{

π(Z ′
1)
}

+
1

2
H{Z ′

2} −
1

2
H
{

π(Z ′
2)
}

= d{Z1, Z2} − d
{

π(Z1), π(Z2)
}

,

where the inequality follows from submodularity, and in the second-last equality
we used (three times) the identity

H
{

X | π(X)
}

= H{X} −H
{

π(X)
}

,

which holds for any G-valued random variable X, since X determines π(X).
If Z1 and Z2 are independent, then the difference between the two sides is

H
{

Z1 − Z2 | π(Z1 − Z2)
}

−H
{

Z1 − Z2 | π(Z1), π(Z2)
}

= H
{

Z1 − Z2 | π(Z1 − Z2)
}

−H
{

Z1 − Z2 | π(Z1), π(Z2), π(Z1 − Z2)
}

.

But one of the definitions of conditional mutual information is

I{X : Y | Z} = H{X | Z} −H{X | Y, Z},

so letting X = Z1−Z2, Y =
(

π(Z1), π(Z2)
)

, and Z = π(Z1−Z2), we see that the
two sides of the inequality differ by exactly the conditional mutual information
term claimed above.

We will use this proposition in the following special case.
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Corollary 7.2 ([2], Corollary 4.2 ). Let G be an abelian group and let Y1, Y2,
Y3, and Y4 be independent G-valued random variables. Then

d{Y1, Y2}+ d{Y3, Y4} = d{Y1 − Y3; Y2 − Y4}+ d{Y1 | Y1 − Y3; Y2 | Y2 − Y4}

+ I{Y1 − Y2 : Y2 − Y4 | Y1 − Y2 − Y3 + Y4}.

Proof. We apply this with the subtraction homomorphism π : G×G→ G given
by π(x, y) = x− y. Then the previous proposition applied to Z1 = (Y1, Y3) and
Z2 = (Y2, Y4) yields the equality

d
{

(Y1, Y3); (Y2, Y4)
}

= d
{

Y1 − Y3, Y2 − Y4
}

+ d
{

(Y1, Y3) | Y1 − Y3; (Y2, Y4) | Y2 − Y4
}

+ I
{

(Y1 − Y2, Y3 − Y4) : (Y1 − Y3, Y2 − Y4)
∣

∣ Y1 − Y2 − Y3 − Y4
}

= d
{

Y1 − Y3, Y2 − Y4
}

+ d
{

Y1 | Y1 − Y3; Y2 | Y2 − Y4
}

.

+ I
{

Y1 − Y2 : Y2 − Y4
∣

∣ Y1 − Y2 − Y3 + Y4
}

where in the last line we used the fact that (Y1−Y2, Y1−Y2−Y3+Y4) determines
Y3 − Y4 as well as the fact that (Y2 − Y4, Y1 − Y2 − Y3 + Y4) determines Y1 − Y3.
But by independence,

d
{

(Y1, Y3); (Y2, Y4)
}

= H{Y1 − Y2, Y3 − Y4} −
H{Y1, Y3}

2
−

H{Y2, Y4}

2
= d{Y1, Y2}+ d{Y3, Y4},

so the corollary is proved.

8. Sums and fibres

In Section 5, we showed that to prove the polynomial Freiman–Ruzsa theorem,
it suffices to produce, for every pair (X1, X2) of random variables taking values
in G = Fn

2 with d{X1, X2} > 0, a pair (X ′
1, X

′
2) with τ{X ′

1, X
′
2} < τ{X1, X2}.

(This was Proposition 6.4.) Recall that the definition of τ involves the “global”
variables X∗

1 and X∗
2 , as well as the global constant η = 1/9.

To prove this statement, it is somewhat more convenient to work with its
contrapositive. That is, we shall assume that (X1, X2) has d{X1, X2} = k and
that this pair minimises τ ; that is, τ{X ′

1, X
′
2} ≥ τ{X1, X2} for all (X ′

1, X
′
2).

Without loss of generality we may further assume that X1 and X2 are indepen-
dent. Our aim is to show that k = 0. The first lemma we prove amounts to little
more than expansion of definitions, but is worth writing explicitly nonetheless.

Lemma 8.1. Suppose (X1, X2) ∈ P(G)
2 is a minimiser of τ with d{X1, X2} =

k. Then for all (X ′
1, X

′
2) ∈ P(G)

2,

d{X ′
1, X

′
2} ≥ k − η

(

d{X∗
1 , X

′
1} − d{X∗

1 , X1}+ d{X∗
2 , X

′
2} − d{X∗

2 , X2}
)

,
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and for all (X ′
1, X

′
2) ∈ P(G)

2 and any discrete random variables Y1 and Y2, we
have

d{X ′
1 | Y1;X

′
2 | Y2}

≥ k − η
(

d{X∗
1 ;X

′
1 | Y1} − d{X∗

1 , X1}+ d{X∗
2 ;X

′
2 | Y2} − d{X∗

2 , X2}
)

.

Proof. The first inequality follows directly from τ{X ′
1, X

′
2} ≥ τ{X1, X2} and

the definition of τ . For the second inequality, suppose that Y1 has support A1

and Y2 has support A2 and sum the inequalities τ{X1 |Y1 = y1; X2 |Y2 = y2} ≥
τ{X1, X2}, weighted by P{Y1 = y1, Y2 = y2} for all (y1, y2) ∈ A1 ×A2.

The task now is to investigate specific choices of (X ′
1, X

′
2) and see what

information we can glean about a minimising pair (X1, X2). The next lemma
proves our first inequality in this direction.

Lemma 8.2. Let G = Fn
2 and suppose (X1, X2) ∈ P(G)

2 is a minimiser of τ
with d{X1, X2} = k. Then letting

I1 = I{X1 +X2 : X1 +X2 |X1 +X2 +X1 +X2},

where X1 and X1 be copies of X1 and X2 and X2 be copies of X2 such that X1,

X1, X2, and X2 are all independent, we have

I1 ≤ 2ηk.

Furthermore, we have

H{X1 +X2 +X1 +X2} ≤
1

2
H{X1}+

1

2
H{X2}+ (2 + η)k − I1.

Proof. Since

k = d{X1, X2} = d{X1, X2} = d{X2, X1},

applying Lemma 3.5 four times gives us the inequalities

d{X∗
1 ;X1 +X2} − d{X∗

1 , X1} ≤
1

2
k +

1

4
H{X2} −

1

4
H{X1},

d{X∗
2 ;X2 +X1} − d{X∗

2 , X2} ≤
1

2
k +

1

4
H{X1} −

1

4
H{X2},

d{X∗
1 ;X1 |X1 −X2} − d{X∗

1 , X1} ≤
1

2
k +

1

4
H{X1} −

1

4
H{X2},

and

d{X∗
2 ;X2 |X2 −X1} − d{X∗

2 , X2} ≤
1

2
k +

1

4
H{X2} −

1

4
H{X1}.
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By summing these four inequalites, we obtain

2k ≥ d{X∗
1 ;X1 +X2}+ d{X∗

2 ;X2 +X1}

+ d{X∗
1 ;X1 |X1 −X2}+ d{X∗

2 ;X2 |X2 −X1}

− 2d{X∗
1 , X1} − 2d{X∗

2 , X2}.

()

On the other hand, Corollary 7.2 with (Y1, Y2, Y3, Y4) set to (X1, X2, X2, X1)
gives us

d{X1, X2}+ d{X2, X1} = d{X1 −X2; X2 −X1}

+ d{X1 |X1 −X2; X2 |X2 −X1}

+ I{X1 −X2 : X2 −X1 |X1 −X2 −X2 +X1}.

which can be rewritten

2k = d{X1 +X2; X2 +X1}+ d{X1 |X1 +X2; X2 |X2 +X1}

+ I{X1 +X2 : X2 +X1 |X1 +X2 +X1 +X2}

= d{X1 +X2; X2 +X1}+ d{X1 |X1 +X2; X2 |X2 +X1}+ I1

()

since d{X1, X2} = k and we are working in G = Fn
2 . By Lemma 8.1, we have

d{X1 +X2;X2 +X1} ≥ k − η
(

d{X∗
1 , X1 +X2} − d{X∗

1 , X1}

+ d{X∗
2 , X2 +X1} − d{X∗

2 , X2}
) ()

and

d{X1 |X1 +X2;X2 |X2 +X1} ≥ k − η
(

d{X∗
1 ;X1 |X1 +X2} − d{X∗

1 , X1}

+ d{X∗
2 , X2 |X2 +X1} − d{X∗

2 , X2}
)

.
()

Substituting these two inequalities into () yields

2k ≥ I1 + 2k − η
(

d{X∗
1 , X1 +X2}+ d{X∗

1 , X1 |X1 +X2}

+ d{X∗
2 , X2 +X1}+ d{X∗

2 , X2 |X2 +X2},

− 2d{X∗
1 , X1} − 2d{X∗

2 , X2}
)

whence

I1 ≤ η
(

d{X∗
1 , X1 +X2}+ d{X∗

1 , X1 |X1 +X2}

+ d{X∗
2 , X2 +X1}+ d{X∗

2 , X2 |X2 +X2},

− 2d{X∗
1 , X1} − 2{X∗

2 , X2}
)

and we can substitute the inequality () to get I1 ≤ 2ηk.
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To prove the other claim, we substitute () into () to obtain

k ≥ I1 + d{X1 +X2;X2 +X1} − η
(

d{X∗
1 ;X1 |X1 +X2} − d{X∗

1 , X1}

+ d{X∗
2 ;X2 |X2 +X1} − d{X∗

2 , X2}
)

≥ I1 + d{X1 +X2;X2 +X1} − ηk,

where in the second line we have used two of the four inequalities begotten by
Lemma 3.5. So (1 + η)k − I1 ≥ d{X1 +X2;X2 +X1}, which we expand to

(1 + η)k − I1 ≥ H{X1 +X2 +X1 +X2} −
1

2
H{X1 +X2} −

1

2
H{X2 +X1}

= H{X1 +X2 +X1 +X2} − d{X1, X2} −
1

2
H{X1} −

1

2
H{X2}

by independence and the fact that subtraction is addition in G. Rearranging
terms completes the proof.

We can interpret this lemma as saying that if setting X ′
1 = X1 + X2 and

X ′
2 = X2 +X1 gives the inequality τ{X ′

1, X
′
2} ≥ τ{X1, X2}, and furthermore if

the same holds when setting (X ′
1, X

′
2) to any pair

(

X1 |X1 +X2 = v1, X2 |X2 +X1 = v2
)

of “fibres”, where (v1, v2) ∈ G2, then we have a bound on a certain mutual
information quantity I1.

Now we perform a similar analysis, where instead of taking sums X1 +X2

and X2 +X1 across variables, now we sum copies of the same variables.

Lemma 8.3. Let G = Fn
2 and suppose (X1, X2) ∈ P(G)

2 is a minimiser of τ
with d{X1, X2} = k. Then letting

I2 = I{X1 +X2 : X1 +X1 |X1 +X2 +X1 +X2},

where X1 and X1 be copies of X1 and X2 and X2 be copies of X2 such that X1,

X1, X2, and X2 are all independent, we have

I2 ≤ 2ηk +
2η(2ηk − I1)

1− η
.

Proof. Applying Lemma 3.5 four times gives us the inequalities

d{X∗
1 ;X1 +X1} − d{X∗

1 , X1} ≤
1

2
d{X1, X1},

d{X∗
2 ;X2 +X2} − d{X∗

2 , X2} ≤
1

2
d{X2, X2},

d{X∗
1 ;X1 |X1 −X1} − d{X∗

1 , X1} ≤
1

2
d{X1, X1},

()
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and

d{X∗
2 ;X2 |X2 −X2} − d{X∗

2 , X2} ≤
1

2
d{X2, X2}. ()

These inequalities and Lemma 8.1 together give

d{X1 +X1;X2 +X2} ≥ k − η
(

d{X∗
1 , X1 +X1} − d{X∗

1 , X1}

+ d{X∗
2 , X2 +X2} − d{X∗

2 , X2}
)

≥ k −
η

2
d{X1, X1} −

η

2
d{X2, X2}

()

and

d{X1 |X1 +X1;X2 |X2 +X2} ≥ k − η
(

d{X∗
1 ;X1 |X1 +X1} − d{X∗

1 , X1}

+ d{X∗
2 , X2 |X2 +X2} − d{X∗

2 , X2}
)

≥ k −
η

2
d{X1, X1} −

η

2
d{X2, X2}.

()
Corollary 7.2, with (Y1, Y2, Y3, Y4) set to (X2, X1, X2, X1) this time, yields

2k = d{X2 +X2; X1 +X1}+ d{X2 |X2 +X2; X1 |X1 +X1}

+ I{X1 +X2 : X1 +X1 |X1 +X2 +X1 +X2}

= d{X1 +X1; X2 +X2}+ d{X1 |X1 +X1; X2 |X2 +X2}+ I2,

()

into which we substitute () and () to obtain

I2 ≤ η
(

d{X1, X1}+ d{X2, X2}
)

.

It remains to bound d{X1, X1}+ d{X2, X2}.
Since H{X1 + X1} = H{X1} + d{X1, X1} and similarly for X2, we may

expand

d{X1 +X1;X2 +X2} = H{X1 +X1 +X2 +X2}

−
1

2
H{X1 +X1} −

1

2
H{X2 +X2}

= H{X1 +X1 +X2 +X2} −
1

2
H{X1} −

1

2
H{X2}

−
1

2
d{X1, X1} −

1

2
H{X2, X2}.

But recall that the second conclusion of Lemma 8.2 was

H{X1 +X2 +X1 +X2} ≤
1

2
H{X1}+

1

2
H{X2}+ (2 + η)k − I1,

meaning that

d{X1 +X1;X2 +X2} ≤ (2 + η)k −
1

2
d{X1, X1} −

1

2
d{X2, X2} − I1.
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Chaining this with () yields

k −
η

2
d{X1, X1} −

η

2
d{X2, X2} ≤ (2 + η)k −

1

2
d{X1, X1} −

1

2
d{X2, X2} − I1,

which simplifies to

d{X1, X1}+ d{X2, X2} ≤
2k + 2ηk − 2I1

1− η
= 2k +

2(2ηk − I1)

1− η

and hence

I2 ≤ 2ηk +
2η(2ηk − I1)

1− η
.

9. Endgame

We now approach the phase of the proof which the authors of [2] theatrically
call the ‘endgame.’ There is just one more lemma we need before we can give a
full proof of Proposition 6.4.

Lemma 9.1. Let X1 and Y1 be any Fn
2 -valued random variables, and let T1,

T2, and T3 be Fn
2 -valued random variables such that T1 + T2 + T3 = 0 holds

identically. Putting

δ = I{T1 : T2}+ I{T1 : T3}+ I{T2 : T3}

and letting ψ be the functional given by

ψ{T ′
1, T

′
2} = d{T ′

1, T
′
2}+ η

(

d{X∗
1 , T

′
1} − d{X∗

1 , X1}+ d{X∗
2 , T

′
2} − d{X∗

2 , X2}
)

,

there exist random variables T ′
1 and T ′

2 such that

ψ{T ′
1, T

′
2} ≤

(

1 +
η

3

)

δ +
η

3

2
∑

i=1

3
∑

j=1

(

d{X∗
i , Tj} − d{X∗

i , Xi}
)

Proof. From the fact that any two of the Tj determine the full triple (T1, T2, T3),
we have

H{T1, T2} = H{T1, T3} = H{T2, T3} = H{T1, T2, T3}.

Then since T1 + T2 = T3 we may apply Lemma 4.6 with (X,Y, Z) = (T1, T2, T3)
to bound

∑

t3∈F
n

2

P{T3 = t3}d
{

(T1 | T3 = t3); (T2 | T3 = t3)
}

≤ 2 I{T1 : T2}+ 2H{T3} −H{T1, T2}

= 2H{T1}+ 2H{T2}+ 2H{T3} − 3H{T1, T2}

= I{T1 : T2}+ I{T1 : T3}+ I{T2 : T3}

= δ.
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Letting Z be a random variable independent of both X∗
1 and X∗

2 , we apply
Lemma 2.5 with (X,Z, Y,W ) = (X∗

1 , Z, T1, T3) to obtain

∑

t3∈F
n

2

P{T3 = t3}
(

d
{

X∗
1 ; (T1 | T3 = t3)

}

− d{X∗
1 , X1}

)

= d{X∗
1 , T1 | T3} − d{X∗

1 , X1}

≤ d{X∗
1 , T1}+

1

2
I{T1 : T3} − d{X∗

1 , X1},

and applying the same lemma with (X,Z, Y,W ) = (X∗
2 , Z, T2, T3) yields

∑

t3∈F
n

2

P{T3 = t3}
(

d
{

X∗
2 ; (T2 | T3 = t3)

}

− d{X∗
2 , X2}

)

≤ d{X∗
2 , T2}+

1

2
I{T2 : T3} − d{X∗

2 , X2}.

Putting the three observations together, we have
∑

t3∈F
n

2

P{T3 = t3}ψ
{

(T1 | T3 = t3); (T2 | T3 = t3)
}

=
∑

t3∈F
n

2

P{T3 = t3}
(

d
{

(T1 | T3 = t3); (T2 | T3 = t3)
}

+ η d
{

X∗
1 ; (T1 | T3 = t3)

}

+ η d
{

X∗
2 ; (T2 | T3 = t3)

}

− η d{X∗
1 , X1} − η d{X

∗
2 , X2}

)

≤ δ + η
(

d{X∗
1 , T1} − d{X∗

1 , X1}+ d{X∗
2 , T2} − d{X∗

2 , X2}

+
1

2
I{T1 : T3}+

1

2
I{T2 : T3}

)

,

Choosing some t3 in the support of T3 such that the value of ψ inside the sum is
minimal and then setting T ′

1,3 = (T1 | T3 = t3) and T
′
2,3 = (T2 | T3 = t3), we have

ψ
{

T ′
1,3, T

′
2,3

}

≤ δ + η
(

d{X∗
1 , T1} − d{X∗

1 , X1}+ d{X∗
2 , T2} − d{X∗

2 , X2}

+
1

2
I{T1 : T3}+

1

2
I{T2 : T3}

)

We can now repeat this for all six permutations (α, β, γ) of (1, 2, 3) and average
the corresponding bounds for (Tα, Tβ , Tγ) to obtain

1

6

∑

(α,β,γ)∈S3

ψ
{

T ′
α,γ , T

′
β,γ

}

≤ δ − η d{X∗
1 , X1} − η d{X

∗
2 , X2}

+
η

6

∑

(α,β,γ)∈S3

(

d{X∗
1 , Tα}+ d{X∗

2 , Tβ}

+
1

2
I{Tα : Tγ}+

1

2
I{Tβ : Tγ}

)

.
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Since each of {1, 2, 3} appears twice as α and twice as β, we have

∑

(α,β,γ)∈S3

(

d{X∗
1 , Tα}+ d{X∗

2 , Tβ}
)

= 2
2

∑

i=1

3
∑

j=1

d{X∗
i , Tj}

and
∑

(α,β,γ)∈S3

(

1

2
I{Tα : Tγ}+

1

2
I{Tβ : Tγ}

)

= 2δ.

Consequently, the average of ψ
{

T ′
α,γ , T

′
β,γ

}

over all permutations (α, β, γ) is
bounded above by

(

1 +
η

3

)

δ − η d{X∗
1 , X1} − η d{X

∗
2 , X2}+

η

3

2
∑

i=1

3
∑

j=1

d{X∗
i , Tj},

so the result follows by letting (T ′
1, T

′
2) equal the pair (T ′

α,γ , T
′
β,γ) for the choice

of (α, β, γ) that minimises ψ
{

T ′
α,γ , T

′
β,γ

}

.

We are now able to prove Proposition 6.4, which we shall restate in the
contrapositive. Just as in previous sections, the functional τ depends on the
fixed random variables X∗

1 and X∗
2 as well as the choice of constant η = 1/9.

Proposition 6.4′. Let X1 and X2 be Fn
2 -valued random variables with the

property that τ{X ′
1, X

′
2} ≥ τ{X1, X2} for all random variables X ′

1 and X ′
2 on

Fn
2 . Then d{X1, X2} = 0.

Proof. Let k = d{X1, X2}. Let X1 and X1 be copies of X1 and X2 and X2

copies of X2 such that X1, X1, X2, and X2 are all independent. Let I1 and I2
be as in the previous section, and let

I3 = I{X1 +X2 : X1 +X1 |X1 +X2 +X1 +X2},

so that I3 = I2 (which follows from interchanging the rôles of X1 and X1). For
brevity of notation, let

U = X1 +X2, V = X1 +X2, W = X1 +X1,

and
S = X1 +X2 +X1 +X2.

Then

I1 = I{U : V | S}, I2 = I{W : U | S}, and I3 = I{V :W | S}.

Lemma 8.2 gave us

I3 = I2 ≤ 2ηk +
2η(2ηk − I1)

1− η
,
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so setting
δ = I{U : V | S}+ I{W : U | S}+ I{V :W | S},

we have

δ ≤ I1 + 4ηk +
4η(2ηk − I1)

1− η

=
I1 − ηIn + 4ηk − 4η2k + 8η2k − 4ηI1

1− η

= 6ηk +
(1− 5η)I1 + 4ηk + 4η2k − 6ηk + 6η2k

1− η

= 6ηk +
(1− 5η)I1 − 2ηk + 10η2k

1− η

= 6ηk −
1− 5η

1− η
(2ηk − I1)

()

Now we perform invocations of Lemma 3.6 to obtain bounds on various
Ruzsa distances. Setting (X,Y, Z,W ) = (X∗

1 , X1, X2, X1 +X2), gives

d{X∗
1 ;U | S} − d{X∗

1 , X1} ≤
1

2

(

H{S}+H{U} −H{X1} −H{X1 +X2}
)

=
1

2

(

H{S} −H{X1}
)

,

where in the second line we used the fact that

H{U} = H{X1 +X2} = H{X1 +X2}.

Similarly, we have

d{X∗
2 ;U | S} − d{X∗

2 , X2} ≤
1

2

(

H{S} −H{X2}
)

,

d{X∗
1 ;V | S} − d{X∗

1 , X1} ≤
1

2

(

H{S} −H{X1}
)

,

d{X∗
2 ;V | S} − d{X∗

2 , X2} ≤
1

2

(

H{S} −H{X2}
)

,

and

d{X∗
1 ,W | S} − d{X∗

1 , X1} ≤
1

2

(

H{S}+H{W} −H{X1} −H{W ′}
)

,

where W ′ = X2 + X2. To address the asymmetry in the last bound, we note
that for any fixed value s taken by S, we have W ′ =W + s, so d{X∗

2 ;W | S} =
d{X∗

2 ;W
′ | S}. Now applying Lemma 3.6 to W ′ yields

d{X∗
2 ;W | S} − d{X∗

2 , X2} ≤
1

2

(

H{S}+H{W} −H{X2} −H{W ′}
)

.
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The sum of these six inequalities is

2
∑

i=1

∑

A∈{U,V,W}

(

d{X∗
i ;A|S}−d{X

∗
i , Xi}

)

≤ 3H{S}−
3

2
H{X1}−

3

2
H{X2}. ()

The second part of Lemma 8.2 states that

H{S} ≤
1

2
H{X1}+

1

2
H{X2}+ (2 + η)k − I1,

which can be plugged into () to give

2
∑

i=1

∑

A∈{U,V,W}

(

d{X∗
i ;A | S} − d{X∗

i , Xi}
)

≤ 3(2 + η)k − 3I1

≤ 6k − 3ηk + 6ηk − 3I1

= (6− 3η)k + 3(2ηk − I1).

()

Let ψ be defined as in Lemma 9.1. By Lemma 8.1, k ≤ ψ{T ′
1, T

′
2} for all

random variables T ′
1 and T ′

2, so for any random variables (T1, T2, T3), the pair
(T ′

1, T
′
2) furnished by Lemma 9.1 satisfies

k ≤ ψ{T ′
1, T

′
2} ≤

(

1 +
η

3

)

δ +
η

3

2
∑

i=1

3
∑

j=1

(

d{X∗
i , Tj} − d{X∗

i , Xi}
)

.

In particular, since (U + V +W |S = s) is identically zero for all possible values
s of S, we can set

T1 = (U | S = s), T2 = (V | S = s), and T3 = (W | S = s)

and then average the above inequality over all s ∈ Fn
2 , weighted by P{S = s} to

obtain

k ≤

(

1 +
η

3

)

δ +
η

3

2
∑

i=1

∑

A∈{U,V,W}

(

d{X∗
i , A | S} − d{X∗

i , Xi}
)

.

We now substitute the upper bounds () and () to get

k ≤

(

1 +
η

3

)(

6ηk −
1− 5η

1− η
(2ηk − I1)

)

+
η

3

(

(6− 3η)k + 3(2ηk − I1)

)

= (8η − η2)k +

(

η −
(

1 +
η

3

)1− 5η

1− η

)

(2ηk − I1).
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With the choice η = 1/9,

η −
(

1 +
η

3

)1− 5η

1− η
= −

11

27
≤ 0

and 2ηk − I1 ≥ 0 by Lemma 8.2, hence one concludes that

k ≤ (8η + η2)k =
73

81
k,

which is nonsense unless k = 0.
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