Title

a demo by
Marcel K. Goh
32 February 2143

1. Introduction

This is a demo of all the features of GOHATEX. Shame on you for not learning Plain $T_{E} X$. This is not a perfect imitation; the keen Plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ user will notice that some things (e.g., spacing between paragraphs) still isn't as beautiful as in Plain.
Theorem 1. This is how to make a theorem.
Proof. Prove the theorem afterwards.
Lemma 2 (Parentheses). Sometimes you want to name your theorems/lemmas.
Solution. Sometimes you want to put the slug in display math mode. We have shown that

$$
2+2=4
$$

Sometimes you want to typeset an algorithm:
Algorithm A (Name). Description of algorithm.
A1. [Initialise.] Use GOH ${ }^{\mathrm{AA}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.
A2. [Fall in love.] The formatting is so exquisite that you want to do unspeakable things to it (like write your own $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros).
A3. [Convert.] Switch to Plain TEX.
A4. [Enlightenment.] Your soul transcends.
I'm not sure why you have to leave a blank space between each algorithm step for it to work. You don't have to do that in Plain $T_{E} X$. When the algorithm has ≥ 10 steps, you'll want \aalgbegin instead.

Algorithm B (Math). These are some math macros I added. There are not too many of them and you should probably use your own macros for other things you like.
B1. [Sets.] We have the inclusion $\mathbf{N} \subseteq \mathbf{Z} \subseteq \mathbf{Q} \subseteq \mathbf{R} \subseteq \mathbf{C}$.
B2. [Probability.] We find that $\mathbf{P}\{A\}=1, \mathbf{E}\{X\}=2$, and $\mathbf{V}\{X\}=\sigma^{2}$.
B3. [Indicators.] The indicator of an event $\mathbf{1}_{A}$ equals 1 if A is true and 0 if A is false. You can also spell out the event; for example, if A is the event that $u-v$, then you can write $\mathbf{1}_{[u-v]}$.
B4. [Dots.] We sometimes want to define $[1 \ldots n]=\{1,2, \ldots, n\}$.
B5. [Equation numbers.] You can number your equations with old-style numerals:

$$
\begin{equation*}
\left[z^{n}\right] f(z)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z^{n+1}} d z \tag{1}
\end{equation*}
$$

B6. [Reference.] You can reference an equation using (1234567890).
B7. [Credit where it's due.] Some of these macros are lifted right out of plain.tex, which was written by Knuth himself.
B8. [Operators.] You can make your own operators and functions and they can even have limits, like

$$
\underset{n \rightarrow \infty}{\operatorname{mylim}} \operatorname{myfunc}_{n}(x) .
$$

B9. [Stalling.] Can't you tell I'm just trying to get to ten steps?
B10. [Slug.] Don't forget to end your algorithm with a slug! I
This is the end of a subsection.
Big bold label. Use this when you don't want to start a whole new section, but you still want to break up your text.

