
§1 LP-BALLS INTRODUCTION 1

Written by Marcel K. Goh. Last updated July 30, 2021 at 21:16

1. Introduction. This literate program contains various functions for experimenting with points in the
unit ball of Lp-space over Rd. We will maintain a set of points in this space, and provide functionality for
randomly generating new ones, as well as printing the current state of the point set.

2. This is the main outline of the program. We have a couple of global variables storing p ∈ (0,∞], the
dimension d, the set points of points we are working with (and the maximum size max points of this array).
The three parameters will be supplied by the user via command-line arguments. One specifies the case
p = ∞ by supplying a negative number for p. We represent vectors in Rd as C double arrays of length
d+ 1. While perhaps a bit wasteful, this allows us to index from 1 to d rather than from 0 to d− 1.

#include <float.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

double p;
double p inv ;
int d;
int max points ;
int num points ;
double ∗∗points ;

〈Print points to PostScript file 12 〉;
〈Point set functions 3 〉;
〈Random variate generation 4 〉;
〈Committee-generating algorithm 15 〉;
〈 Inner product computation 19 〉;
〈Draw loci when p = ∞ 20 〉;

int main (int argc , char ∗argv [])
{
〈Gather input and initialise global variables 24 〉;
〈Seed the pseudorandom number generator 5 〉;
if (d ≡ 2 ∧ p < 0) random locus (5, "locus.ps", 150, 30);

}

2 THE POINT SET LP-BALLS §3

3. The point set. This section contains functions on points in Lp-space. First, we provide facilities to
add new points, delete all points, and to list the current point set on the console. We use the current size of
the point set, stored in the variable num points to help index into the points array. Clearing the point set
is done by setting num points to 0, so everything in the array at and after the index num points possibly
contains garbage values.

〈Point set functions 3 〉 ≡
void add point (double ∗point)
{
if (num points ≥ max points) {
printf ("I failed to add point because array is full.\n");
return;

}
for (int i = 1; i ≤ d; ++i) points [num points][i] = point [i];
++num points ;

}

void clear points ()
{
num points = 0;

}

void list points ()
{
for (int i = 0; i < num points ; ++i) {
printf ("(");
for (int j = 1; j ≤ d; ++j) {
printf ("%.2f", points [i][j]);
if (j 6= d) printf (", ");

}
printf (")\n");

}
}

This code is used in section 2.

§4 LP-BALLS RANDOM VARIATE GENERATION 3

4. Random variate generation. The main goal is to generate a point uniformly at random from the
interior of the unit ball in Lp-space over Rd. To do this, we will require an exponential random variable
with mean 1.

〈Random variate generation 4 〉 ≡
〈Uniform and exponential variates 6 〉;
〈Normal random variate 11 〉;
〈Gamma random variate 7 〉;
〈Uniform random point in unit ball 8 〉;

This code is used in section 2.

5. First, in the main function, we initialise a pseudorandom number generator with the current time.

〈Seed the pseudorandom number generator 5 〉 ≡
time t t;

srand ((unsigned) time (&t));
for (int i = 0; i < 10; ++i) {
rand ();

}

This code is used in section 2.

4 RANDOM VARIATE GENERATION LP-BALLS §6

6. To generate our exponential random variable, we use von Neumann’s algorithm, as described by
L. Devroye on p. 126 of Non-Uniform Random Variate Generation (New York: Springer, 1986).

〈Uniform and exponential variates 6 〉 ≡
double uniform01 ()
{
return ((double) rand ())/RAND_MAX;

}

double exponential1 ()
{
int Z = 0;
double Y ;
int k;

do {
Y = uniform01 ();
k = 1;

double W = Y ;
int stop = 0;

do {
double U = uniform01 ();

if (U > W) {
stop = 1;

}
else {
W = U ;
++k;

}
} while (¬stop);
++Z;

} while (k % 2 ≡ 0);
return ((double)(Z − 1)) + Y ;

}

This code is used in section 4.

§7 LP-BALLS RANDOM VARIATE GENERATION 5

7. We will also make use of the gamma distribution, which, for a parameter a > 0, has density

f(x) =
1

Γ(a)
xa−1e−x.

We use an algorithm of R. C. H. Cheng [Applied Statistics 26 (1977), 71–75], described on p. 413 of Non-
Uniform Random Variate Generation, which works for a ≥ 1. (Note that there is a mistake in the printed
algorithm, but the corrigenda on Devroye’s website contain the required amendments.)

〈Gamma random variate 7 〉 ≡
double gamma dist (double a)
{
double b = a− log (4);
double lambda = sqrt (2 ∗ a− 1);
double c = a+ lambda ;
int accept = 0;
double U, V , Y , X, Z, R;
double S = 4.5 ∗ Z − (1 + log (4.5));

do {
U = uniform01 ();
V = uniform01 ();
Y = (1.0/lambda) ∗ log (V /(1− V));
X = a ∗ exp(Y);
Z = U ∗ V ∗ V ;
R = b + c ∗ Y −X;
accept = (R ≥ S);
if (¬accept) accept = (R ≥ log (Z));

} while (¬accept);
return X;

}

This code is used in section 4.

6 RANDOM VARIATE GENERATION LP-BALLS §8

8. To get a uniform random point from the unit ball in Lp(Rd), we sample d independent random variables,
call them X1, . . . , Xd from the density

f(x) =
1

2Γ(1 + 1/p)
e−|x|p .

This is called an exponential power distribution, and Devroye notes in Non-Uniform Random Variate

Generation that if X = V Y 1/p with V uniformly distributed on [−1, 1] and Y is gamma-distributed with
parameter 1 + 1/p, then X has the density f(x). We also sample an exponential random variable Y with
mean 1, and then output the random vector

(X1, . . . , Xd)

(Y +
∑d

i=1
|Xi|p)1/p

.

This method and extensions thereof are described by F. Barthe, O. Guedon, S. Mendelson, and A. Naor
[Annals of Probability 33 (2005), 480–513]. The function we write returns a point by modifying an array
that is passed as an argument.

〈Uniform random point in unit ball 8 〉 ≡
void random point (double ∗point)
{
double ∗X = malloc ((d + 1) ∗ sizeof (double));

for (int i = 1; i ≤ d; ++i) X [i] = 0.0;
if (p < 0) {
〈The case p = ∞ 9 〉;

}
else {
〈The case p 6= ∞ 10 〉;

}
free (X);

}

This code is used in section 4.

9. When p = ∞, we simply return a point uniformly from the box [−1, 1]d.

〈The case p = ∞ 9 〉 ≡
for (int i = 1; i ≤ d; ++i) point [i] = 2 ∗ uniform01 ()− 1;

This code is used in section 8.

10. In all the other cases, we sample using the method described above.

〈The case p 6= ∞ 10 〉 ≡
for (int i = 1; i ≤ d; ++i) {
double V = 2 ∗ uniform01 ()− 1;

X[i] = V ∗ pow (gamma dist (1 + p inv), p inv);
}

double Y = exponential1 ();
double pow sum = Y ;

for (int i = 1; i ≤ d; ++i) pow sum += pow (fabs (X [i]), p);

double scale factor = 1.0/(pow (pow sum , p inv));

for (int i = 1; i ≤ d; ++i) point [i] = scale factor ∗X[i];

This code is used in section 8.

§11 LP-BALLS RANDOM VARIATE GENERATION 7

11. I originally needed a normal random deviate to handle the case p = 2, so I added this function, but
it is no longer necessary since we now have a general function. I left it here just for kicks. We generate the
normal using the Box-Muller transform, due to G. E. P. Box and M. E. Muller [Annals of Mathematical

Statistics 29 (1958), 610–611]. If U1 and U2 are two independent random variables uniformly distributed in
[0, 1], then

V1 =
√

−2 lnU1 cos(2πU2) and V2 =
√

−2 lnU1 sin(2πU2)

are independent normal random variables with mean 0 and variance 1. To make the return type of our
function simpler, we simply output one of these values (so we will end up calling this function twice as often
as is actually necessary).

〈Normal random variate 11 〉 ≡
double normal01 ()
{
double U1 = uniform01 ();
double U2 = uniform01 ();
double scale = sqrt (−2.0 ∗ log (U1));

return scale ∗ cos (2 ∗ M_PI ∗ U2);
}

This code is used in section 4.

8 FILE OUTPUT LP-BALLS §12

12. File output. When d = 2, it is easy to plot our set of points graphically. Our program does this by
generating a PostScript file.

〈Print points to PostScript file 12 〉 ≡
void plot single point (FILE ∗file ,double red ,double green ,double blue ,double x,double y)
{
fprintf (file , "%f %f %f setrgbcolor %f %f dot\n", red , green , blue , x, y);

}

void to postscript (const char ∗filename , int radius)
{
if (d 6= 2) {
printf ("I cannot output PostScript unless d equals 2!\n");
return;

}

FILE ∗file = fopen (filename , "w");

〈Preamble 13 〉;
〈Plot the points array 14 〉;
fprintf (file , "showpage\n");
fclose (file);

}

This code is used in section 2.

13. We first add a bare-bones preamble to the file to draw the axes and declare various PostScript functions.
The axes are drawn with center at (radius , radius)

〈Preamble 13 〉 ≡
char ∗preamble = "%!PS\n/dot { 1.5 0 360 arc closepath fill } def\n/square { \

/r exch def /y exch def /x exch def\nnewpath x r sub y r sub moveto 0 r 2 mul rl\

ineto\nr 2 mul 0 rlineto 0 r 2 mul neg rlineto\nr 2 mul neg 0 rlineto closepath \

fill} def\n0.5 setlinewidth\n";

fprintf (file , "%s", preamble);
fprintf (file , "%d %d translate\n", radius , radius);
fprintf (file , "newpath 0 %d moveto 0 %d lineto ",−radius , radius);
fprintf (file , "%d 0 moveto %d 0 lineto stroke\n",−radius , radius);

This code is used in sections 12 and 23.

14. Next, we plot each of the elements of the points array, with a colour gradient to indicate the relative
orderings of points. The first point in the array is drawn in colour1 , the final point is drawn in colour2 , and
points in between have their colours interpolated accordingly.

〈Plot the points array 14 〉 ≡
double colour1 [] = {1.0, 0.0, 0.0}; /∗ red ∗/
double colour2 [] = {0.0, 0.0, 1.0}; /∗ blue ∗/

for (int i = 0; i < num points ; ++i) {
double t = ((double) i)/((double)(num points − 1));
double r = (1.0− t) ∗ colour1 [0] + t ∗ colour2 [0];
double g = (1.0− t) ∗ colour1 [1] + t ∗ colour2 [1];
double b = (1.0− t) ∗ colour1 [2] + t ∗ colour2 [2];

plot single point (file , r, g, b, points [i][1] ∗ radius , points [i][2] ∗ radius);
}

This code is used in section 12.

§15 LP-BALLS GROWING A COMMITTEE BY CONSENSUS VOTING 9

15. Growing a committee by consensus voting. Consider the point set as representing a group of
people (each person is a vector of real numbers each describing a different trait). The committee grows
in discrete time steps. At each step, two candidates are presented to the committee, and each committee
member votes for the candidate closest to itself in Lp-distance. A candidate can only win by consensus; that
is, if any two committee members vote for different candidates, then the election is inconclusive and no new
member is added.

〈Committee-generating algorithm 15 〉 ≡
〈Distance computation 16 〉;
〈Consensus algorithm 17 〉;

This code is used in section 2.

16. First we need to compute distances between two points x = (x1, . . . , xd) and y = (y1, . . . , yd) in
Lp(Rd). When p 6= ∞, this is given by the formula

||x − y||p =
(

d
∑

i=1

|xi − yi|
p
)1/p

,

and when p = ∞, we simply take the maximum of the coordinate-wise distances:

||x− y||∞ = max
1≤i≤d

|xi − yi|

〈Distance computation 16 〉 ≡
double p dist (double ∗x,double ∗y)
{
if (p < 0) {
double max = DBL_MIN;

for (int i = 1; i ≤ d; ++i) {
double diff = fabs (x[i]− y[i]);

if (diff > max) max = diff ;
}
return max ;

}
else {
double sum = 0;

for (int i = 1; i ≤ d; ++i) sum += pow (fabs (x[i]− y[i]), p);
return pow (sum , 1.0/p);

}
}

This code is used in section 15.

10 GROWING A COMMITTEE BY CONSENSUS VOTING LP-BALLS §17

17. Now we present the algorithm for growing the committee, which takes a parameter indicating how many
rounds of voting should be undertaken. We start by clearing the point set and initialising the committee
with a point chosen uniformly at random from the unit ball (this counts as the first round of voting). In
each round, we compute distances from each point to the two candidates and keep track of whether each
candidate has votes. If at any point, both candidates have votes, we can continue to the next election, since
that round is inconclusive. The return value is the size of the committee after all rounds have elapsed.

〈Consensus algorithm 17 〉 ≡
int consensus (int max t ,double(∗dist)(double ∗,double ∗))
{
clear points ();

double ∗cand1 = malloc ((d+ 1) ∗ sizeof (double));
double ∗cand2 = malloc ((d+ 1) ∗ sizeof (double));

random point (cand1);
add point (cand1);
for (int t = 0; t < max t − 1; ++t) {
random point (cand1);
random point (cand2);

int voted1 = 0;
int voted2 = 0;

for (int i = 0; i < num points ; ++i) {
double dist1 = dist (points [i], cand1);
double dist2 = dist (points [i], cand2);

if (dist1 > dist2) {
voted1 = 1;

}
else {
voted2 = 1;

}
if (voted1 ∧ voted2) break;

}
if (voted1 ∧ ¬voted2) add point (cand1);
if (voted2 ∧ ¬voted1) add point (cand2);

}
free (cand1);
free (cand2);
return num points ;

}

This code is used in section 15.

§18 LP-BALLS ILLUSTRATIONS AND EXAMPLES 11

18. Illustrations and examples. Here are some examples of the output of the committee-generating
algorithm. In each case, 1 000, 000 rounds of voting were conducted. In each figure, redder points were added
earlier and bluer points were added later.
For p = ∞, a committee of 20 members was formed:

12 ILLUSTRATIONS AND EXAMPLES LP-BALLS §18

For p = 1, a committee of 16 members was formed:

§18 LP-BALLS ILLUSTRATIONS AND EXAMPLES 13

And for p = 2, a committee of 33 members was formed:

These committee sizes seemed representative of typical behaviour, in that running the program multiple
times with the same parameters did not produce wildly different values in any of the cases.

14 ORTHOGONAL COMMITTEES LP-BALLS §19

19. Orthogonal committees. We now restrict ourselves to the case p = 2, when Lp(Rd) is an inner-
product space. We can perform the same experiment, but instead of measuring distance with the Lp-norm,
we can measure distance between two vectors as the absolute value of their inner product.

〈 Inner product computation 19 〉 ≡
double inner product (double ∗x,double ∗y)
{
if (p 6= 2) {
printf ("I can only take inner products when p = 2!\n");
return 0.0;

}

double sum = 0.0;

for (int i = 1; i ≤ d; ++i) sum += x[i] ∗ y[i];
return sum ;

}

double abs inner product (double ∗x,double ∗y)
{
return fabs (inner product (x, y));

}

double one minus inner product (double ∗x,double ∗y)
{
return 1.0− inner product (x, y);

}

This code is used in section 2.

§20 LP-BALLS LOCUS OF POINTS FURTHER TO COMMITTEE THAN CANDIDATE 15

20. Locus of points further to committee than candidate. In this section, we consider the case
when p = ∞ and d = 2. Given a committee G of points and a candidate c, we will draw the locus of all
points c′ such that the committee G will reach a consensus and elect c over c′.

〈Draw loci when p = ∞ 20 〉 ≡
〈Draw squares in PostScript 21 〉;
〈Locus computation 22 〉;
〈Generate a drawing with random points 23 〉;

This code is used in section 2.

21. First, we supply a facility to draw L∞ balls, which look like squares, in PostScript.

〈Draw squares in PostScript 21 〉 ≡
void draw square (FILE ∗file ,double red ,double green ,double blue ,double x,double y,double r)
{
fprintf (file , "%f %f %f setrgbcolor %f %f %f square\n", red , green , blue , x, y, r);

}

This code is used in section 20.

22. Next, given a set of points G = {g1, . . . , gn} representing a committee as well as a candidate point c,
the locus we seek is

[0, 1]2 \

n
⋃

i=1

B∞

(

gi, d∞(gi, c)
)

,

where d∞(x, y) = ||x− y||∞ and B∞(x, r) is the set of all points y with d∞(x, y) < r. The way we draw this
is to first fill in [0, 1]2 in red, then superimpose various balls in blue. The remaining red area is the locus of
all points that is further from each committee member than the candidate is.

〈Locus computation 22 〉 ≡
void draw locus (FILE ∗file , int committee size ,double ∗∗committee ,double ∗candidate , int radius)
{
draw square (file , 1, 0, 0, 0, 0, radius); /∗ background drawn in red ∗/
for (int i = 0; i < committee size ; ++i) { /∗ complement of locus drawn in blue ∗/
draw square (file , 0.2, 0, 1, committee [i][1] ∗ radius , committee [i][2] ∗ radius , p dist (committee [i],

candidate) ∗ radius);
}
for (int i = 0; i < committee size ; ++i) { /∗ draw committee in black ∗/
plot single point (file , 0, 0, 0, committee [i][1] ∗ radius , committee [i][2] ∗ radius);

}
plot single point (file , 0, 1, 0, candidate [1] ∗ radius , candidate [2] ∗ radius); /∗ candidate in green ∗/
draw square (file , 1, 1, 1, 2 ∗ radius , 0, radius); /∗ clean up with white squares ∗/
draw square (file , 1, 1, 1, 0, 2 ∗ radius , radius);
draw square (file , 1, 1, 1, 2 ∗ radius , 2 ∗ radius , radius);

}

This code is used in section 20.

16 LOCUS OF POINTS FURTHER TO COMMITTEE THAN CANDIDATE LP-BALLS §23

23. Lastly, we sample random points and generate the corresponding drawing.

〈Generate a drawing with random points 23 〉 ≡
void random locus (int committee size , const char ∗filename , int radius , int num pages)
{
double ∗candidate = malloc ((d+ 1) ∗ sizeof (double));
double ∗∗committee = malloc (committee size ∗ sizeof (double ∗));

for (int i = 0; i < committee size ; ++i) committee [i] = malloc ((d+ 1) ∗ sizeof (double));
if (d 6= 2) {
printf ("I cannot output PostScript unless d equals 2!\n");
return;

}

FILE ∗file = fopen (filename , "w");

〈Preamble 13 〉;
for (int page = 0; page < num pages ; ++page) {
for (int i = 0; i < committee size ; ++i) random point (committee [i]);
random point (candidate);
if (page 6= 0) fprintf (file , "%d %d translate\n", radius , radius);
draw locus (file , committee size , committee , candidate , radius);
fprintf (file , "showpage\n");

}
fclose (file);
free (candidate);
for (int i = 0; i < committee size ; ++i) free (committee [i]);

}

This code is used in section 20.

§24 LP-BALLS HANDLING USER INPUT 17

24. Handling user input. These components of the main function deal with command-line input. The
program takes up to three command-line arguments in the following order: p, d, and max points . If some
or all of these arguments are missing, we default to p = 2, d = 2, and max points = 300.

〈Gather input and initialise global variables 24 〉 ≡
p = 2.0;
d = 2;
max points = 300;
num points = 0;
if (argc ≥ 2) {
p = atof (argv [1]);
p inv = 1.0/p;

}
if (argc ≥ 3) {
d = atoi (argv [2]);
if (d < 0) {
printf ("I expect d to be >= 0.\n");
return 1;

}
}
if (argc ≥ 4) {
max points = atoi (argv [3]);
if (max points < 10) {
printf ("I expect max_points to be >= 0.\n");
return 1;

}
}
points = malloc (max points ∗ sizeof (double ∗));
for (int i = 0; i < max points ; ++i) points [i] = malloc ((d+ 1) ∗ sizeof (double));
printf ("Program started with p = %f, d = %d, and max_points = %d\n", p, d,max points);

This code is used in section 2.

18 MISCELLANEOUS TESTS LP-BALLS §25

25. Miscellaneous tests. Here are collected some snippets that were used during testing phases.

〈Sample mean test 25 〉 ≡
double sum = 0.0;
int num samples = 0;

for (int i = 0; i < num samples ; ++i) {
double sample = exponential1 ();

sum += sample ;
printf ("%f\n", sample);

}
printf ("Sample mean: %f\n", sum/num samples);

26. 〈Generate random point cloud 26 〉 ≡
double ∗point = malloc ((d+ 1) ∗ sizeof (double));

for (int i = 0; i < max points ; ++i) {
random point (point);
add point (point);

}
free (point);

27. 〈Test Lp
27 〉 ≡

int rounds = max points ∗max points ;

printf ("L^p−distance voting for %d rounds produced a committee with %d members.\n",
rounds , consensus (rounds , p dist));

28. 〈Test orthogonal 28 〉 ≡
int rounds = max points ;

printf ("Orthogonal voting for %d rounds produced a committee with %d members.\n", rounds ,
consensus (rounds , abs inner product));

29. 〈Test close inner product 29 〉 ≡
int rounds = max points ;

printf ("Close inner product voting for %d rounds produced a committee with %d members.\n",
rounds , consensus (rounds , one minus inner product));

§30 LP-BALLS INDEX 19

30. Index.

a: 7.
abs inner product : 19, 28.
accept : 7.
add point : 3, 17, 26.
argc : 2, 24.
argv : 2, 24.
atof : 24.
atoi : 24.
b: 7, 14.
blue : 12, 21.
c: 7.
candidate : 22, 23.
cand1 : 17.
cand2 : 17.
clear points : 3, 17.
colour1 : 14.
colour2 : 14.
committee : 22, 23.
committee size : 22, 23.
consensus : 17, 27, 28, 29.
cos : 11.
d: 2.
DBL_MIN: 16.
diff : 16.
dist : 17.
dist1 : 17.
dist2 : 17.
draw locus : 22, 23.
draw square : 21, 22.
exp : 7.
exponential1 : 6, 10, 25.
fabs : 10, 16, 19.
fclose : 12, 23.
file : 12, 13, 14, 21, 22, 23.
filename : 12, 23.
fopen : 12, 23.
fprintf : 12, 13, 21, 23.
free : 8, 17, 23, 26.
g: 14.
gamma dist : 7, 10.
green : 12, 21.
i: 3, 5, 8, 9, 10, 14, 16, 17, 19, 22, 23, 24, 25, 26.
inner product : 19.
j: 3.
k: 6.
lambda : 7.
list points : 3.
log : 7, 11.
M_PI: 11.
main : 2, 5, 24.
malloc : 8, 17, 23, 24, 26.

max : 16.
max points : 2, 3, 24, 26, 27, 28, 29.
max t : 17.
normal01 : 11.
num pages : 23.
num points : 2, 3, 14, 17, 24.
num samples : 25.
one minus inner product : 19, 29.
p: 2.
p dist : 16, 22, 27.
p inv : 2, 10, 24.
page : 23.
plot single point : 12, 14, 22.
point : 3, 8, 9, 10, 26.
points : 2, 3, 14, 17, 24.
pow : 10, 16.
pow sum : 10.
preamble : 13.
printf : 3, 12, 19, 23, 24, 25, 27, 28, 29.
R: 7.
r: 14, 21.
radius : 12, 13, 14, 22, 23.
rand : 5, 6.
RAND_MAX: 6.
random locus : 2, 23.
random point : 8, 17, 23, 26.
red : 12, 21.
rounds : 27, 28, 29.
S: 7.
sample : 25.
scale : 11.
scale factor : 10.
sqrt : 7, 11.
srand : 5.
stop : 6.
sum : 16, 19, 25.
t: 5, 14, 17.
time : 5.
to postscript : 12.
U : 6, 7.
uniform01 : 6, 7, 9, 10, 11.
U1: 11.
U2: 11.
V : 7, 10.
voted1 : 17.
voted2 : 17.
W : 6.
X: 7, 8.
x: 12, 16, 19, 21.
Y : 6, 7, 10.
y: 12, 16, 19, 21.

20 INDEX LP-BALLS §30

Z: 6, 7.

LP-BALLS NAMES OF THE SECTIONS 21

〈Committee-generating algorithm 15 〉 Used in section 2.

〈Consensus algorithm 17 〉 Used in section 15.

〈Distance computation 16 〉 Used in section 15.

〈Draw loci when p = ∞ 20 〉 Used in section 2.

〈Draw squares in PostScript 21 〉 Used in section 20.

〈Gamma random variate 7 〉 Used in section 4.

〈Gather input and initialise global variables 24 〉 Used in section 2.

〈Generate a drawing with random points 23 〉 Used in section 20.

〈Generate random point cloud 26 〉
〈 Inner product computation 19 〉 Used in section 2.

〈Locus computation 22 〉 Used in section 20.

〈Normal random variate 11 〉 Used in section 4.

〈Plot the points array 14 〉 Used in section 12.

〈Point set functions 3 〉 Used in section 2.

〈Preamble 13 〉 Used in sections 12 and 23.

〈Print points to PostScript file 12 〉 Used in section 2.

〈Random variate generation 4 〉 Used in section 2.

〈Sample mean test 25 〉
〈Seed the pseudorandom number generator 5 〉 Used in section 2.

〈Test Lp
27 〉

〈Test close inner product 29 〉
〈Test orthogonal 28 〉
〈The case p = ∞ 9 〉 Used in section 8.

〈The case p 6= ∞ 10 〉 Used in section 8.

〈Uniform and exponential variates 6 〉 Used in section 4.

〈Uniform random point in unit ball 8 〉 Used in section 4.

LP-BALLS

Section Page
Introduction . 1 1
The point set . 3 2
Random variate generation . 4 3
File output . 12 8
Growing a committee by consensus voting . 15 9
Illustrations and examples . 18 11
Orthogonal committees . 19 14
Locus of points further to committee than candidate . 20 15
Handling user input . 24 17
Miscellaneous tests . 25 18
Index . 30 19

