Written by Marcel K. Goh. Last updated July 30, 2021 at 21:16

1. Introduction. This literate program contains various functions for experimenting with points in the unit ball of L^{p}-space over \mathbf{R}^{d}. We will maintain a set of points in this space, and provide functionality for randomly generating new ones, as well as printing the current state of the point set.
2. This is the main outline of the program. We have a couple of global variables storing $p \in(0, \infty]$, the dimension d, the set points of points we are working with (and the maximum size max_points of this array). The three parameters will be supplied by the user via command-line arguments. One specifies the case $p=\infty$ by supplying a negative number for p. We represent vectors in \mathbf{R}^{d} as C double arrays of length $d+1$. While perhaps a bit wasteful, this allows us to index from 1 to d rather than from 0 to $d-1$.
```
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
    double p;
    double p_inv;
    int d;
    int max_points;
    int num_points;
    double **points;
    <Print points to PostScript file 12\rangle;
    <Point set functions 3\rangle;
    <Random variate generation 4\rangle;
    <Committee-generating algorithm 15>;
    <Inner product computation 19\rangle;
    <Draw loci when p=\infty 20\rangle;
    int main(int argc, char *argv[])
    {
        < Gather input and initialise global variables 24\rangle;
        <Seed the pseudorandom number generator 5 ;
        if (d\equiv2\wedgep<0) random_locus(5, "locus.ps", 150,30);
    }
```

3. The point set. This section contains functions on points in L^{p}-space. First, we provide facilities to add new points, delete all points, and to list the current point set on the console. We use the current size of the point set, stored in the variable num_points to help index into the points array. Clearing the point set is done by setting num_points to 0 , so everything in the array at and after the index num_points possibly contains garbage values.
```
<Point set functions 3\rangle\equiv
    void add_point(double *point)
    {
        if (num_points \geq max_points) {
            printf("I|failed
            return;
        }
        for (int }i=1;i\leqd;+i) points[num_points][i] = point[i]
        ++num_points;
    }
    void clear_points()
    {
        num_points = 0;
    }
    void list_points()
    {
        for (int i=0; i<num_points; ++i) {
            printf("(");
            for (int j=1; j\leqd;++j) {
                printf("%.2f ", points[i][j]);
            if (j\not=d) printf(",\sqcup");
            }
            printf(")\n");
        }
    }
```

This code is used in section 2.
4. Random variate generation. The main goal is to generate a point uniformly at random from the interior of the unit ball in L^{p}-space over \mathbf{R}^{d}. To do this, we will require an exponential random variable with mean 1.
\langle Random variate generation 4$\rangle \equiv$
\langle Uniform and exponential variates 6\rangle;
\langle Normal random variate 11〉;
\langle Gamma random variate 7 ;;
$\left\langle\right.$ Uniform random point in unit ball 8 ${ }^{\text {; }}$
This code is used in section 2.
5. First, in the main function, we initialise a pseudorandom number generator with the current time.
\langle Seed the pseudorandom number generator 5$\rangle \equiv$ time_t t;
srand ((unsigned) time (\&t));
for (int $i=0 ; i<10 ;++i)\{$
rand ();
\}
This code is used in section 2.
6. To generate our exponential random variable, we use von Neumann's algorithm, as described by L. Devroye on p. 126 of Non-Uniform Random Variate Generation (New York: Springer, 1986).
\langle Uniform and exponential variates 6$\rangle \equiv$
double uniform01 ()
\{ return ((double) rand ())/RAND_MAX;
\}
double exponential1 ()
\{
int $Z=0$; double Y; int k; do \{
$Y=$ uniform01 ();
$k=1 ;$
double $W=Y$;
int stop $=0$;
do \{
double $U=$ uniform01 ();
if $(U>W)$ \{
stop $=1$;
\}
else \{
$W=U$;
$++k$; \}
\} while (\neg stop);

+ Z;
$\}$ while ($k \% 2 \equiv 0$);
return $(($ double $)(Z-1))+Y$;
\}
This code is used in section 4.

7. We will also make use of the gamma distribution, which, for a parameter $a>0$, has density

$$
f(x)=\frac{1}{\Gamma(a)} x^{a-1} e^{-x}
$$

We use an algorithm of R. C. H. Cheng [Applied Statistics 26 (1977), 71-75], described on p. 413 of NonUniform Random Variate Generation, which works for $a \geq 1$. (Note that there is a mistake in the printed algorithm, but the corrigenda on Devroye's website contain the required amendments.)

```
\(\langle\) Gamma random variate 7\(\rangle \equiv\)
    double gamma_dist (double a)
    \{
        double \(b=a-\log (4)\);
        double \(\operatorname{lambda}=\operatorname{sqrt}(2 * a-1)\);
        double \(c=a+\) lambda;
        int accept \(=0\);
        double \(U, V, Y, X, Z, R\);
        double \(S=4.5 * Z-(1+\log (4.5))\);
        do \{
            \(U=\) uniform01 ();
            \(V=\) uniform01 ();
            \(Y=(1.0 / \operatorname{lambda}) * \log (V /(1-V))\);
            \(X=a * \exp (Y)\);
            \(Z=U * V * V\);
            \(R=b+c * Y-X ;\)
            accept \(=(R \geq S)\);
            if \((\neg\) accept \()\) accept \(=(R \geq \log (Z))\);
        \} while ( \(\neg\) accept);
        return \(X\);
    \}
```

This code is used in section 4.
8. To get a uniform random point from the unit ball in $L^{p}\left(\mathbf{R}^{d}\right)$, we sample d independent random variables, call them X_{1}, \ldots, X_{d} from the density

$$
f(x)=\frac{1}{2 \Gamma(1+1 / p)} e^{-|x|^{p}}
$$

This is called an exponential power distribution, and Devroye notes in Non-Uniform Random Variate Generation that if $X=V Y^{1 / p}$ with V uniformly distributed on $[-1,1]$ and Y is gamma-distributed with parameter $1+1 / p$, then X has the density $f(x)$. We also sample an exponential random variable Y with mean 1 , and then output the random vector

$$
\frac{\left(X_{1}, \ldots, X_{d}\right)}{\left(Y+\sum_{i=1}^{d}\left|X_{i}\right|^{p}\right)^{1 / p}}
$$

This method and extensions thereof are described by F. Barthe, O. Guedon, S. Mendelson, and A. Naor [Annals of Probability 33 (2005), 480-513]. The function we write returns a point by modifying an array that is passed as an argument.
\langle Uniform random point in unit ball 8$\rangle \equiv$
void random_point(double *point)
\{
double $* X=\operatorname{malloc}((d+1) * \operatorname{sizeof}($ double $))$;
for (int $i=1 ; i \leq d ;++i) \quad X[i]=0.0$;
if $(p<0)$ \{
\langle The case $p=\infty 9\rangle$;
\}
else \{
\langle The case $p \neq \infty 10\rangle$;
\}
free (X);
\}
This code is used in section 4.
9. When $p=\infty$, we simply return a point uniformly from the box $[-1,1]^{d}$.
\langle The case $p=\infty 9\rangle \equiv$
for (int $i=1 ; i \leq d ;++i) \operatorname{point}[i]=2 *$ uniform01 () -1 ;
This code is used in section 8 .
10. In all the other cases, we sample using the method described above.
\langle The case $p \neq \infty 10\rangle \equiv$
for (int $i=1 ; i \leq d ;++i)$ \{
double $V=2 *$ uniform01 () -1 ;
$X[i]=V * \operatorname{pow}\left(g a m m a _d i s t\left(1+p _i n v\right), p _i n v\right) ;$
\}
double $Y=$ exponential1 ();
double pow_sum $=Y$;
for (int $i=1 ; i \leq d ;++i)$ pow_sum $+=\operatorname{pow}(f a b s(X[i]), p)$;
double scale_factor $=1.0 /\left(\right.$ pow $\left(\right.$ pow_sum, $\left.\left.p_{-} i n v\right)\right)$;
for (int $i=1 ; i \leq d ;++i)$ point $[i]=$ scale_factor $* X[i]$;
This code is used in section 8 .
11. I originally needed a normal random deviate to handle the case $p=2$, so I added this function, but it is no longer necessary since we now have a general function. I left it here just for kicks. We generate the normal using the Box-Muller transform, due to G. E. P. Box and M. E. Muller [Annals of Mathematical Statistics 29 (1958), 610-611]. If U_{1} and U_{2} are two independent random variables uniformly distributed in $[0,1]$, then

$$
V_{1}=\sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right) \quad \text { and } \quad V_{2}=\sqrt{-2 \ln U_{1}} \sin \left(2 \pi U_{2}\right)
$$

are independent normal random variables with mean 0 and variance 1. To make the return type of our function simpler, we simply output one of these values (so we will end up calling this function twice as often as is actually necessary).

```
Normal random variate 11\rangle\equiv
    double normal01()
    {
        double U1 = uniform01();
        double U2 = uniform01();
        double scale =sqrt(-2.0* log(U1));
        return scale * cos(2*M_PI * U2);
    }
```

This code is used in section 4.
12. File output. When $d=2$, it is easy to plot our set of points graphically. Our program does this by generating a PostScript file.
\langle Print points to PostScript file 12$\rangle \equiv$
void plot_single_point (FILE $*$ file, double red, double green, double blue, double x, double y) \{
 \}
void to_postscript(const char $*$ filename, int radius) \{
if $(d \neq 2) \quad\{$

return;
\}
FILE $*$ file $=$ fopen (filename, " w ");
\langle Preamble 13〉;
\langle Plot the points array 14\rangle;
fprintf (file, "showpage\n");
fclose(file);
\}

This code is used in section 2.
13. We first add a bare-bones preamble to the file to draw the axes and declare various PostScript functions. The axes are drawn with center at (radius, radius)

```
<Preamble 13\rangle\equiv
    char *preamble = "%!PS\n/dot}{\mp@code{\sqcup1.5&0\cup360
```



```
        ineto\nr 
        fill}_def \n0.5\setlinewidth\n";
    fprintf(file, "%s", preamble);
    fprintf (file, "%d\llcorner%%d\sqcuptranslate\n", radius, radius);
    fprintf (file, "newpath
    fprintf(file, "%d\sqcup0
```

This code is used in sections 12 and 23.
14. Next, we plot each of the elements of the points array, with a colour gradient to indicate the relative orderings of points. The first point in the array is drawn in colour1, the final point is drawn in colour2, and points in between have their colours interpolated accordingly.
\langle Plot the points array 14$\rangle \equiv$

```
double colour1[] = {1.0,0.0,0.0}; /* red */
```

double colour2 [] $=\{0.0,0.0,1.0\} ; \quad / *$ blue $* /$
for (int $i=0 ; i<$ num_points $;++i$) \{
double $t=(($ double $) i) /(($ double $)($ num_points -1$))$;
double $r=(1.0-t) *$ colour $1[0]+t *$ colour2 $[0]$;
double $g=(1.0-t) *$ colour 1 $[1]+t *$ colour2 $[1]$;
double $b=(1.0-t) *$ colour $1[2]+t *$ colour2 $[2]$;
plot_single_point (file , r, g, b, points [i][1] * radius , points $[i][2] *$ radius $)$;
\}

This code is used in section 12.
15. Growing a committee by consensus voting. Consider the point set as representing a group of people (each person is a vector of real numbers each describing a different trait). The committee grows in discrete time steps. At each step, two candidates are presented to the committee, and each committee member votes for the candidate closest to itself in L^{p}-distance. A candidate can only win by consensus; that is, if any two committee members vote for different candidates, then the election is inconclusive and no new member is added.
\langle Committee-generating algorithm 15$\rangle \equiv$
\langle Distance computation 16\rangle;
\langle Consensus algorithm 17〉;
This code is used in section 2.
16. First we need to compute distances between two points $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$ in $L^{p}\left(\mathbf{R}^{d}\right)$. When $p \neq \infty$, this is given by the formula

$$
\|x-y\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{p}\right)^{1 / p}
$$

and when $p=\infty$, we simply take the maximum of the coordinate-wise distances:

$$
\|x-y\|_{\infty}=\max _{1 \leq i \leq d}\left|x_{i}-y_{i}\right|
$$

```
< Distance computation 16\rangle\equiv
    double p_dist(double *x,double *y)
    {
        if (p<0) {
            double max = DBL_MIN;
            for (int i=1; i\leqd;++i) {
                double diff = fabs(x[i]-y[i]);
                if (diff > max) max = diff;
            }
            return max;
        }
        else {
            double sum =0;
            for (int i=1; i\leqd;++i) sum += pow (fabs (x[i]-y[i]),p);
            return pow(sum,1.0/p);
        }
    }
This code is used in section 15.
```

17. Now we present the algorithm for growing the committee, which takes a parameter indicating how many rounds of voting should be undertaken. We start by clearing the point set and initialising the committee with a point chosen uniformly at random from the unit ball (this counts as the first round of voting). In each round, we compute distances from each point to the two candidates and keep track of whether each candidate has votes. If at any point, both candidates have votes, we can continue to the next election, since that round is inconclusive. The return value is the size of the committee after all rounds have elapsed.
```
\(\langle\) Consensus algorithm 17〉 \(\equiv\)
    int consensus(int max_t, double \((* \operatorname{dist})(\) double \(*\), double \(*))\)
    \{
        clear_points ();
        double \(*\) cand1 \(=\operatorname{malloc}((d+1) *\) sizeof \((\) double \())\);
        double \(*\) cand \(2=\operatorname{malloc}((d+1) * \operatorname{sizeof}(\) double \()) ;\)
        random_point (cand1);
        add_point (cand1);
        for \((\) int \(t=0 ; t<\) max_ \(t-1 ;++t)\{\)
            random_point (cand1);
            random_point(cand2);
            int voted \(1=0\);
            int \(v o t e d 2=0 ;\)
            for (int \(i=0 ; i<\) num_points \(;++i\) ) \{
            double dist1 \(=\operatorname{dist}(\) points \([i]\), cand1 \()\);
            double \(\operatorname{dist2}=\operatorname{dist}(\) points \([i]\), cand2 \() ;\)
            if \((\) dist1 \(>\) dist2 \()\{\)
                        voted \(1=1\);
            \}
            else \{
                voted2 \(=1\);
            \}
            if (voted1 \(\wedge\) voted2) break;
            \}
            if (voted1 \(\wedge \neg\) voted2) add_point(cand1);
            if (voted2 \(\wedge \neg\) voted1) add_point (cand2);
        \}
        free(cand1);
        free (cand2);
        return num_points;
    \}
```

This code is used in section 15 .
18. Illustrations and examples. Here are some examples of the output of the committee-generating algorithm. In each case, 1000,000 rounds of voting were conducted. In each figure, redder points were added earlier and bluer points were added later.

For $p=\infty$, a committee of 20 members was formed:

For $p=1$, a committee of 16 members was formed:

And for $p=2$, a committee of 33 members was formed:

These committee sizes seemed representative of typical behaviour, in that running the program multiple times with the same parameters did not produce wildly different values in any of the cases.
19. Orthogonal committees. We now restrict ourselves to the case $p=2$, when $L^{p}\left(\mathbf{R}^{d}\right)$ is an innerproduct space. We can perform the same experiment, but instead of measuring distance with the L^{p}-norm, we can measure distance between two vectors as the absolute value of their inner product.

```
<Inner product computation 19\rangle \equiv
    double inner_product(double *x, double *y)
    {
        if (p\not=2) {
            printf("I I⿱can
            return 0.0;
        }
        double sum = 0.0;
        for (int i=1; i\leqd;++i) sum +=x[i]*y[i];
        return sum;
    }
    double abs_inner_product(double *x,double *y)
    {
        return fabs(inner_product(x,y));
    }
    double one_minus_inner_product(double *x,double *y)
    {
        return 1.0 - inner_product (x,y);
    }
```

This code is used in section 2.
20. Locus of points further to committee than candidate. In this section, we consider the case when $p=\infty$ and $d=2$. Given a committee G of points and a candidate c, we will draw the locus of all points c^{\prime} such that the committee G will reach a consensus and elect c over c^{\prime}.
\langle Draw loci when $p=\infty 20\rangle \equiv$
\langle Draw squares in PostScript 21\rangle;
〈Locus computation 22\rangle;
〈Generate a drawing with random points 23 ; ;
This code is used in section 2.
21. First, we supply a facility to draw L^{∞} balls, which look like squares, in PostScript.
\langle Draw squares in PostScript 21$\rangle \equiv$
void draw_square (FILE *file, double red, double green, double blue, double x, double y, double r) \{

\}
This code is used in section 20.
22. Next, given a set of points $G=\left\{g_{1}, \ldots, g_{n}\right\}$ representing a committee as well as a candidate point c, the locus we seek is

$$
[0,1]^{2} \backslash \bigcup_{i=1}^{n} B_{\infty}\left(g_{i}, d_{\infty}\left(g_{i}, c\right)\right)
$$

where $d_{\infty}(x, y)=\|x-y\|_{\infty}$ and $B_{\infty}(x, r)$ is the set of all points y with $d_{\infty}(x, y)<r$. The way we draw this is to first fill in $[0,1]^{2}$ in red, then superimpose various balls in blue. The remaining red area is the locus of all points that is further from each committee member than the candidate is.

```
\(\langle\) Locus computation 22\(\rangle \equiv\)
    void draw_locus (FILE \(*\) file, int committee_size, double \(* *\) committee, double \(*\) candidate, int radius)
    \{
        draw_square (file, \(1,0,0,0,0\), radius \()\); \(/ *\) background drawn in red \(* /\)
    for (int \(i=0 ; i<\) committee_size \(;+i)\{\quad / *\) complement of locus drawn in blue \(* /\)
        draw_square (file, \(0.2,0,1\), committee \([i][1] *\) radius , committee \([i][2] *\) radius , p_dist (committee \([i]\),
                candidate) \(*\) radius \()\);
    \}
    for (int \(i=0 ; i<\) committee_size \(;++i\) ) \{ \(\quad / *\) draw committee in black \(* /\)
        plot_single_point (file, \(0,0,0\), committee \([i][1] *\) radius, committee \([i][2] *\) radius \()\);
    \}
    plot_single_point (file \(, 0,1,0\), candidate \([1] *\) radius, candidate \([2] *\) radius \() ; \quad / *\) candidate in green \(* /\)
    draw_square (file, \(1,1,1,2 *\) radius, 0 , radius \() ; \quad / *\) clean up with white squares \(* /\)
    draw_square (file, \(1,1,1,0,2 *\) radius, radius \()\);
    draw_square (file, \(1,1,1,2 *\) radius, \(2 *\) radius, radius \()\);
    \}
```

This code is used in section 20.

23．Lastly，we sample random points and generate the corresponding drawing．
\langle Generate a drawing with random points 23$\rangle \equiv$
void random＿locus（int committee＿size，const char $*$ filename，int radius，int num＿pages）
\｛ double $*$ candidate $=$ malloc $((d+1) *$ sizeof $($ double $))$ ； double $* *$ committee $=$ malloc $($ committee＿size $* \operatorname{sizeof}($ double $*))$ ； for（int $i=0 ; i<$ committee＿size $;++i)$ committee $[i]=\operatorname{malloc}((d+1) * \operatorname{sizeof}($ double $)$ ）； if $(d \neq 2)\{$

return； \} FILE $*$ file $=$ fopen（filename，＂ w ＂）；〈Preamble 13〉； for（int page $=0 ;$ page $<$ num＿pages $;++$ page $)$ \｛
for（int $i=0 ; i<$ committee＿size $;++i)$ random＿point（committee $[i])$ ； random＿point（candidate）；
if（page $\neq 0$ ）fprintf（file，＂\％d」\％d」translate $\backslash \mathrm{n} "$ ，radius，radius $)$ ；
draw＿locus（file，committee＿size，committee，candidate，radius）；
fprintf（file，＂showpage $\backslash \mathrm{n}$＂）；
\}
fclose（file）；
free（candidate）；
for（int $i=0 ; i<$ committee＿size $;+i)$ free（committee［i］）；
\}
This code is used in section 20.
24. Handling user input. These components of the main function deal with command-line input. The program takes up to three command-line arguments in the following order: p, d, and max_points. If some or all of these arguments are missing, we default to $p=2, d=2$, and max_points $=300$.
\langle Gather input and initialise global variables 24$\rangle \equiv$
$p=2.0$;
$d=2$;
max_points $=300$;
num_points $=0$;
if $(\operatorname{argc} \geq 2)$ \{
$p=\operatorname{atof}(\operatorname{argv}[1])$;
$p_{_} i n v=1.0 / p ;$
\}
if $(\operatorname{argc} \geq 3) \quad\{$
$d=$ atoi $(\operatorname{argv}[2])$;
if $(d<0)$ \{
$\operatorname{printf}\left(" I_{\sqcup} \operatorname{expect}_{\sqcup} \mathrm{d}_{\sqcup} \mathrm{to}_{\sqcup} \mathrm{be}_{\sqcup}>=\sqcup 0 . \backslash \mathrm{n} "\right)$;
return 1 ;
\}
\}
if $(\operatorname{argc} \geq 4)\{$
max_points $=$ atoi(argv[3]);
if (max_points < 10) \{
printf ("I $\left.\mathrm{I}_{\sqcup} \operatorname{expect}_{\llcorner\text {max_points }}^{\llcorner } \mathrm{to}_{\sqcup} \mathrm{be}_{\sqcup}>=\sqcup 0 . \backslash \mathrm{n} "\right)$;
return 1 ;
\}
\}
points $=$ malloc $($ max_points $* \operatorname{sizeof}($ double $*))$;
for (int $i=0 ; i<$ max_points $;+i)$ points $[i]=\operatorname{malloc}((d+1) * \operatorname{sizeof}($ double $))$;

This code is used in section 2.
25. Miscellaneous tests. Here are collected some snippets that were used during testing phases.
\langle Sample mean test 25$\rangle \equiv$
double sum $=0.0$;
int num_samples $=0$;
for (int $i=0 ; i<$ num_samples $;++i$) $\{$
double sample $=$ exponential1 ();
sum $+=$ sample;
printf("\%f $\backslash \mathrm{n} "$, sample);
\}
printf("Sample」mean:๖\%f \n", sum/num_samples);
26. \langle Generate random point cloud 26$\rangle \equiv$
double $*$ point $=\operatorname{malloc}((d+1) *$ sizeof $($ double $))$;
for (int $i=0 ; i<$ max_points $;+i$) \{ random_point(point);
add_point (point);
\}
free (point);
27. $\left\langle\right.$ Test $\left.L^{p} 27\right\rangle \equiv$
int rounds $=$ max_points $*$ max_points;
 rounds, consensus(rounds, p_dist));
28. 〈Test orthogonal 28$\rangle \equiv$
int rounds = max_points;
 consensus(rounds, abs_inner_product));
29. \langle Test close inner product 29$\rangle \equiv$
int rounds $=$ max_points ;
 rounds, consensus(rounds, one_minus_inner_product));

30. Index.

a: $\quad \underline{7}$.
abs_inner_product: 19, 28.
accept: $\underline{7}$.
add_point: $\underline{3}, 17,26$.
$\operatorname{argc}: 2,24$.
argv: $\underline{2}, 24$.
atof: 24.
atoi: 24.
b: $\quad \underline{7}, 14$.
blue: 12, 21.
c: $\quad 7$.
candidate: 22, $\underline{23}$.
cand1: 17.
cand2: 17.
clear_points: $\underline{3}, 17$.
colour1: 14.
colour2: 14.
committee: $\underline{22}, \underline{23}$.
committee_size: $\underline{22}, \underline{23}$.
consensus: 17, 27, 28, 29.
cos: 11.
$d: \quad \underline{2}$.
DBL_MIN: 16.
diff: 16 .
dist: 17.
dist1: 17.
dist2: 17.
draw_locus: 22, 23.
draw_square: 21, 22 .
exp: 7.
exponential1: $\underline{6}, 10,25$.
fabs: $10,16,19$.
fclose: 12, 23.
file: $\underline{12}, 13,14, \underline{21}, \underline{22}, \underline{23}$.
filename: 12, $\underline{23}$.
fopen: 12, 23.
fprintf: 12, 13, 21, 23.
free: 8, 17, 23, 26.
$g: \quad 14$.
gamma_dist: $\underline{7}, 10$.
green: 12, 21 .
$i: \underline{3}, \underline{5}, \underline{8}, \underline{9}, \underline{10}, \underline{14}, \underline{16}, \underline{17}, \underline{19}, \underline{22}, \underline{23}, \underline{24}, \underline{25}, \underline{26}$.
inner_product: 19.
j : $\underline{3}$.
k : $\underline{6}$.
lambda: $\quad \underline{7}$.
list_points: $\underline{3}$.
log: 7, 11.
M_PI: 11 .
main: 2, 5, 24.
malloc: 8, 17, 23, 24, 26.
$\max : 16$.
max_points: $\quad \underline{2}, 3,24,26,27,28,29$.
max_t: 17 .
normal01: 11.
num_pages: $\underline{23}$.
num_points: $\underline{\underline{2}}, 3,14,17,24$.
num_samples: $\underline{25}$.
one_minus_inner_product: 19, 29.
p: $\underline{2}$.
p_dist: 16, 22, 27.
p_inv: 2, 10, 24.
page: $\underline{23}$.
plot_single_point: 12, 14, 22.
point: $\underline{3}, \underline{8}, 9,10, \underline{26}$.
points: 2, 3, 14, 17, 24.
pow: 10, 16.
pow_sum: 10.
preamble: 13.
printf: $3,12,19,23,24,25,27,28,29$.
R : 7 .
$r: 14,21$.
radius: $12,13,14, \underline{22}, \underline{23}$.
rand: 5, 6.
RAND_MAX: 6.
random_locus: 2, $\underline{23}$.
random_point: $\underline{8}, 17,23,26$.
red: 12, $\underline{21}$.
rounds: 27, 28, $\underline{29}$.
$S: \quad \underline{7}$.
sample: $\underline{25}$.
scale: 11.
scale_factor: 10.
sqrt: 7, 11.
srand: 5.
stop: $\underline{6}$.
sum: 16, 19, $\underline{25}$.
$t: \quad \underline{5}, \underline{14}, 17$.
time: 5.
to_postscript: $\underline{12}$.
$U: \underline{6}, \underline{7}$.
uniform01: $\underline{6}, 7,9,10,11$.
U1: 11.
U2: $\underline{11 .}$
$V: \underline{7}, \underline{10}$.
voted1: 17.
voted2: 17.
$W: \underline{6}$.
$X: \underline{7}, \underline{8}$.
$x:$ 12, 16, 19, $\underline{11}$.
$Y: \underline{6}, \underline{7}, \underline{10}$.
$y: \underline{12}, \underline{16}, \underline{19}, \underline{21}$.
$Z: \underline{6}, \underline{7}$.
\langle Committee－generating algorithm 15\rangle Used in section 2.
〈Consensus algorithm 17〉 Used in section 15.
\langle Distance computation 16〉 Used in section 15.
\langle Draw loci when $p=\infty 20\rangle$ Used in section 2.
〈Draw squares in PostScript 21〉 Used in section 20.
\langle Gamma random variate 7\rangle Used in section 4.
〈 Gather input and initialise global variables 24\rangle Used in section 2.
\langle Generate a drawing with random points 23\rangle Used in section 20.
\langle Generate random point cloud 26\rangle
\langle Inner product computation 19〉 Used in section 2.
〈Locus computation 22\rangle Used in section 20.
\langle Normal random variate 11〉 Used in section 4.
\langle Plot the points array 14\rangle Used in section 12.
\langle Point set functions 3\rangle Used in section 2.
〈Preamble 13〉 Used in sections 12 and 23.
\langle Print points to PostScript file 12\rangle Used in section 2.
\langle Random variate generation 4〉 Used in section 2.
\langle Sample mean test 25\rangle
〈Seed the pseudorandom number generator 5\rangle Used in section 2.
$\left\langle\right.$ Test $\left.L^{p} 27\right\rangle$
〈Test close inner product 29 〉
〈Test orthogonal 28〉
\langle The case $p=\infty 9\rangle \quad$ Used in section 8 ．
\langle The case $p \neq \infty 10\rangle \quad$ Used in section 8 ．
\langle Uniform and exponential variates 6\rangle Used in section 4.
\langle Uniform random point in unit ball 8〉 Used in section 4.

LP-BALLS

Section Page
Introduction 1
The point set 3
Random variate generation 4
File output 12
Growing a committee by consensus voting 15
Illustrations and examples 18
Orthogonal committees 19
Locus of points further to committee than candidate 20
Handling user input 24
Miscellaneous tests 25 18
Index 30 19

