81 LLL INTRODUCTION 1

Written by Marcel K. Goh. Last updated July 28, 2020 at 11:02

1. Introduction. This literate program performs lattice reduction using the celebrated LLL algorithm
of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovdsz [Math. Annalen 261 (1982), 515-534]. It is a C
implementation of the algorithm as described and analysed by H. Cohen in Section 2.6.1 of his book A
Course in Computational Algebraic Number Theory (New York: Springer, 1996).

Vectors will be represented as C arrays, but since arrays are 0-indexed in C, we will always allocate one
extra entry of memory and then keep the zeroth cell empty. This is for consistency with the usual numbering
by,..., b, of vectors in a basis.

The input to the program is a set of n vectors (b;) that form a Z-basis for the lattice L that we wish to
reduce. We also need to specify the quadratic form ¢, which is done with a matrix Q. If z is a vector, then
the function b(z,y) = Qz - y is bilinear (where - is the ordinary Euclidean dot-product), and we have the
associated quadratic form ¢(x) = b(x,z) = Qx - .

This program does not take input from the console. To change its arguments, modify the three macros
DIM, INPUT_BASIS, and INPUT_QUAD. The LLL-reduced basis will be printed as well as a change-of-basis
matrix H.

2. This is the main outline of the program.

#define DIM 3

#define INPUT_BASIS {{15.0,23.0,11.0},{46.0,15.0,3.0},{32.0,1.0,1.0}}
#define INPUT_QUAD {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}}
#include <float.h>

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

int n; /* global variables, for convenience x*/
double bb[DIM + 1][DIM + 1], Q[DIM + 1][DIM + 1J;
(Linear algebra subroutines 3);

(Lattice reduction algorithm Il 4);

int main()

{
n = DIM;
(Format input into global variables 11);
int xxH;
H = 1I(bb); /* set H to the output of the LLL algorithm, modify bb in place */
if (H+#A) {
(Output basis bb 12);
(Output matrix H 14);

return 0;

else {
return 1;

}
}

2 LINEAR ALGEBRA SUBROUTINES LLL 83

3. Linear algebra subroutines. We begin with some linear algebra subroutines that will help us treat
arrays as vectors. Calling set(z, z) sets the entries of z to the entries of x, while sub(z, z,y) stores the vector
difference of z and y to z. We can scale a vector with scale, and the function dot is the ordinary Euclidean
dot-product. The functions b and ¢ both rely on the matrix @; we have ¢(x) = Qz - z and b(z,y) = Qx - y.
(Linear algebra subroutines 3) =

void set(double z[n],double z[n])

{
for (int i =1; i <n; ++i) {
zli] = alil;
}
}

void add(double z[n],double z[n|, double y[n])

for (int ¢ =1; i <n; ++i) {
z[i] = a[i] + yli);

}
void sub(double z[n],double z[n],double y[n])
{
for (int i =1; i <n; ++i) {
2[i] = «[i] — ylil;

}
void scale(double z[n],double lambda,double z[n])

{
for (int i =1; i <n; ++i) {
z[i] = lambda * x[i];
}
}

void set_i(int z[n],int x[n]) /* integer versions of set, add, sub, and scale */

{
for (int ¢ =1; i <n; ++i) {
z[i] = w[il;
}
}

void add_i(int z[n],int z[n],int y[n])

for (int i =1; i <n; ++i) {
z[i] = xli] + yli;

}

void sub_i(int z[n],int z[n],int y[n])

{
for (int i =1; i <n; ++i) {
zli] = ali] — ylil;
}
}
void scale_i(int z[n],int lambda,int x[n))

{

for (int i =1; i <n; ++i) {

83 LLL LINEAR ALGEBRA SUBROUTINES 3

z[i] = lambda * x[i];
}
}

double dot(double z[n], double y[n])

double sum = 0;
for (int i =1; i <n; ++i) {
sum += z[i] * y[i];

return sum;

}
double b(double z[n],double y[n|)

double sum = 0;
for (int i =1; i <n; ++i) {
sum += dot(Q][i], z) * y[i];

}

return sum;

}
double ¢(double z[n])

{

return b(zx, x);

}

This code is used in section 2.

4 THE LLL LATTICE REDUCTION ALGORITHM LLL 84

4. The LLL lattice reduction algorithm. This is the interesting part of the program. The variable
bb denotes the basis (b;). We will use the Gram-Schmidt orthogonalisation procedure to find an orthogonal
basis (b}), but we do this incrementally, as the algorithm progresses. We keep track of the dot products
b - b} in the array B.

The variable k is the main loop variable, but it doesn’t always increase from iteration to iteration;
sometimes it decreases and sometimes it maintains its value. We will therefore need to store k_maz, the
largest value that k has attained. For 1 < k,j < n, ux; = b(bg,b})/q(b}). We will not want to compute
this every time it is needed, so we store the p values in a table called mu.

The basis (b;) is modified in place so that it is LLL-reduced once the algorithm terminates. The output
is an integer matrix H that represents the new, reduced basis in terms of the original basis, i.e., if M is the
matrix whose columns are the vectors b;, then M - H has the LLL-reduced basis as its columns. Note that
H; is the ith column of H.

(Lattice reduction algorithm 1l 4) =
int *xl/ll(double bb[n + 1][n + 1])
{
int k, k.maz, I;
int xxH = malloc((n + 1) = sizeof (int x));
double mu[n + 1][n + 1];
double bb_star[n + 1)[n + 1];
double Bn + 1];
double temp[n + 1], tempbn + 1]; /* temporary arrays for calculations */
int temp_i[n + 1J;
(Initialisation 5);
int num_loops = 0;
do {
if (k> k-maz) {
(Add one Gram-Schmidt vector 6);
}
l=k—-1,
(Reduce bb[k] by subtracting multiples of bb[l] 7);
if ({Lovédsz condition 8)) {
for (I=k—-2;1>0;, —1) {
(Reduce bb[k] by subtracting multiples of bb[l] 7);

++k;
}
else {
(Swap bb[k] with bb[k — 1] 9);
Ek=2>k-1)72:k-1;
continue;

} while (k <n);
return H;

}

This code is used in section 2.

85 LLL THE LLL LATTICE REDUCTION ALGORITHM 5

5. A for-loop initialises the mu and bb_star arrays to 0 and sets the H matrix to the identity. The
Gram-Schmidt procedure is kickstarted by setting b} < b;, and the main loop variable £ is set to 2.
(Initialisation 5) =
for (int i =1; i <n; ++i) {
H[i] = malloc((n + 1) * sizeof (int));
Bli] = 0;
for (int j=1; j <n; ++j) {
Hi][j]l = (=3)71:0;
mu[i][j] = bb_star[i][j] = 0.0;
}
}
k=2
k-mazx = 1;
set(bb_star[1], bb[1]);
B[1] = gq(bb_star[1]);

This code is used in section 4.

6. If k£ is bigger than it has ever been, we do exactly one step of the Gram-Schmidt orthogonalisation
procedure. To add a new vector by to the orthogonal basis, we trim away all components of by, that are not
orthogonal to some b for j < k. At the end of this process, the b} can safely be added to the orthogonal
basis (b}) if it is nonzero; otherwise, there is some linear dependence in the original basis (b;) so we signal
an error and return A.

(Add one Gram-Schmidt vector 6) =
k_max = k;
set (bb_star[k], bb[k]);
for (int j=1; j <k; ++j) {
mulk)[j] = b(bb[K], bb_star 1)/ BIj):
scale (temp, mu k][], bb_star[j]);
sub(bb_star[k], bb_star k], temp);

B[k] = b(bb_star[k], bb_star[k]);

if (B[k] < DBL_EPSILON) {
printf ("ERROR: ,The input vectors, do not form a basis.\n");
return A;

}

This code is used in section 4.

6 THE LLL LATTICE REDUCTION ALGORITHM LLL 87

7. When we want to determine if a candidate vector by is to be added into the lattice, we can subtract
integer multiples of a vector b; already in the basis. The result is sort of a “remainder vector” (taking a
vector “modulo” another should remind you of Euclidean division), that becomes the new working vector.
We will also have to update the H matrix and the mu table.
(Reduce bb[k] by subtracting multiples of bb[l] 7) =
if (fabs(mulk][l]) > 0.5) {

int rounded = (int) floor ((0.5 + mulk][l]));

scale (temp, rounded , bb[l]);

sub(bblk], bb[k], temp); /* subtract some integer multiple of b; */

scale_i(temp_i, rounded , H[l]);

sub_i(H[k], H[k], temp_i);

mu[k][l] = mu[k][l] — rounded;

for (int i =1; i <lI; ++i) {

mulk][i] = mulk][i] — rounded x mu[l][i];
}

}

This code is used in section 4.

8. At this stage of the algorithm, we are trying to determine if a candidate vector by, should be added to
the LLL-reduced basis. This is done by checking the so-called Lovész condition, namely,

By > (3/4 — ptg x—12)Br_1.

If it is satisfied, we can add by, to the LLL-basis; but if not (this happens when by_; is “too long”, in some
sense), we must swap by and bg_; and update the auxiliary tables accordingly. After this step, bx_; is
discarded because by, is still the candidate vector, but now the LLL-reduced basis is only (by,...,bg_2).
(Lovész condition 8) =

B[k] > (0.75 — mu[k][k — 1] * mu[k][k — 1]) * B[k — 1]

This code is used in section 4.

LLL

THE LLL LATTICE REDUCTION ALGORITHM

7

Here we perform the gnarly task of swapping by and by_;. This means all of the auxiliary arrays and

tables must be updated.

(Swap bb[k] with bb[k — 1] 9) =

set(temp, bb[k]); /* swap by with bg_1 */
set (bb[k], bb[k — 1]);
set(bb[k — 1], temp);
set_i(temp_i, H[K]);
set_i(H[k], H[k — 1]);
set_i (H[k — 1], temp_i);

/* temporary scalars */

/x swap Hy with Hp_1 =/

double t, m;
if (k>2) {
for (int j=1; j <k-—2; ++j) {
t = mulk][j]; [* swap fu; with pr_1; */
mulk][j] = mulk —1][j];
} mulk —1][j] = t;

m = mulk][k — 1];
t = Blk] +m xm * B[k — 1];
mulk|[k — 1] = m * B[k — 1]/¢;
set(tempb, bb_star [k — 1]);
scale (temp, m, tempb);
add (bb_star [k — 1], bb_star[k], temp);
scale (tempb, B[k]/t, tempb);
scale (temp, —1.0 * mu[k][k — 1], bb_star[k]);
add (bb_star[k], temp, tempb);
Blk] = Blk — 1] = B[k]/t;
B[k — 1] =t;
for (int i = k+1; i < kmaz; ++i) {
t = muli][k];
muli][k] = muli][k — 1] — m * t;
muli][k — 1] =t + mu[k][k — 1] * mu[i][k];
} /* phew! x/

This code is used in section 4.

8 INPUT-OUTPUT FUNCTIONALITY LLL 810

10. Input-output functionality. These components of the main function format the input and print
the output to the console.

11. (Format input into global variables 11) =
double input_lattice DIM][DIM] = INPUT_BASIS;
double input_quad [DIM][DIM] = INPUT_QUAD;
for (int i =0; i <n; ++i) {

for (int j =0; j <n; ++j) {
bbli +1)[j + 1] = input_lattice[i][j];
Qi + 1][j + 1] = input_quad[i][j];

}
printf ("Input,lattice basis:\n");
(Print bb 13);
printf ("Input,Q matrix:\n");
for (int j=1; j<n; ++j) {
for (int i =1; i <n; ++i) {
|] 7 QD)
printf ("\n");

}

This code is used in section 2.

12. (Output basis bb 12) =
printf ("Reduced, basis:\n");
(Print bb 13);

This code is used in section 2.

13. (Print bb 13) =

for (int i =1; i <n; ++i) {
printf (" (");
for (int j =1; j <n; ++j) {

printf ("AE", (bb[i][4]));

} if (j #n) printf (",0");
printf (")\n");

}

This code is used in sections 11 and 12.

14. Note that we interchanged ¢ and j in the loops, because H[i] is the ith column of H.

(Output matrix H 14) =
printf ("H matrix:\n");
for (int j =1; j <n; ++j) {
for (int i =1; i <n; ++i) {
} printf ("%du", (H[][j]));
printf ("\n");

}

This code is used in section 2.

815 LLL INDEX 9

15. Index.

add: 3, 9.

add_i: 3.

B: 4.

b: 3.

bb: 2, 4,5, 6,7, 9, 11, 13.
bb_star: 4, 5, 6, 9.
DBL_EPSILON: 6.

DIM: 1, 2, 11.

dot: 3.

fabs: 7.

INPUT_BASIS: 1, 2, 11.
input_lattice: 11.

INPUT_QUAD: 1, 2, 11.
mput_quad: 11.

k_max: 4, 5, 6, 9.
l: 4.

lambda: 3.

ur: 2, 4.

m: 9.

main: 2, 10.
malloc: 4, 5.

num_loops: 4.

printf: 6, 11, 12, 13, 14.
Q: 2.
q 3.
rounded :
scale: 3, 7, 9.
scale_i: 3, 7.
set: 3, 5, 6, 9.
seti: 3, 9.

sub: 3, 6, 7.
subi: 3, 7.
sum: 3.

t: 9.

temp: 4, 6, 7, 9.

7.
6,

10 NAMES OF THE SECTIONS LLL

(Add one Gram-Schmidt vector 6) Used in section 4.
(Format input into global variables 11) Used in section 2.
(Initialisation 5) Used in section 4.

(Lattice reduction algorithm /Il 4) Used in section 2.
(Linear algebra subroutines 3) Used in section 2.

(Lovész condition 8) Used in section 4.

(Output basis bb 12) Used in section 2.

(Output matrix H 14) Used in section 2.

(Print bb 13) Used in sections 11 and 12.

(Reduce bb[k] by subtracting multiples of bb[l] 7) Used in section 4.
(Swap bb[k] with bb[k — 1] 9) Used in section 4.

LLL

Section Page

Introduction 1 1
Linear algebra subroutines 3 2
The LLL lattice reduction algorithm i 4 4
Input-output functionality 10 8
Index .o 15 9

