$\S 1$ LLL INTRODUCTION 1

Written by Marcel K. Goh. Last updated July 28, 2020 at 11:02

1. Introduction. This literate program performs lattice reduction using the celebrated LLL algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász [Math. Annalen 261 (1982), 515–534]. It is a C implementation of the algorithm as described and analysed by H. Cohen in Section 2.6.1 of his book A Course in Computational Algebraic Number Theory (New York: Springer, 1996).

Vectors will be represented as C arrays, but since arrays are 0-indexed in C, we will always allocate one extra entry of memory and then keep the zeroth cell empty. This is for consistency with the usual numbering $\mathbf{b}_1, \ldots, \mathbf{b}_n$ of vectors in a basis.

The input to the program is a set of n vectors (\mathbf{b}_i) that form a **Z**-basis for the lattice L that we wish to reduce. We also need to specify the quadratic form q, which is done with a matrix Q. If x is a vector, then the function $b(x,y) = Qx \cdot y$ is bilinear (where \cdot is the ordinary Euclidean dot-product), and we have the associated quadratic form $q(x) = b(x,x) = Qx \cdot x$.

This program does not take input from the console. To change its arguments, modify the three macros DIM, $INPUT_BASIS$, and $INPUT_QUAD$. The LLL-reduced basis will be printed as well as a change-of-basis matrix H.

2. This is the main outline of the program.

```
#define DIM 3
#define INPUT_BASIS {{15.0, 23.0, 11.0}, {46.0, 15.0, 3.0}, {32.0, 1.0, 1.0}}
#define INPUT_QUAD \{\{1.0, 0.0, 0.0\}, \{0.0, 1.0, 0.0\}, \{0.0, 0.0, 1.0\}\}
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
              /* global variables, for convenience */
  double bb[DIM + 1][DIM + 1], Q[DIM + 1][DIM + 1];
  ⟨Linear algebra subroutines 3⟩;
  \langle Lattice reduction algorithm lll \ 4 \rangle;
  int main()
     n = DIM:
     (Format input into global variables 11);
    int **H;
     H = lll(bb);
                       /* set H to the output of the LLL algorithm, modify bb in place */
    if (H \neq \Lambda) {
       \langle \text{ Output basis } bb | 12 \rangle;
       \langle \text{Output matrix } H | 14 \rangle;
       return 0;
     else {
       return 1;
```

2

3. Linear algebra subroutines. We begin with some linear algebra subroutines that will help us treat arrays as vectors. Calling set(z,x) sets the entries of z to the entries of x, while sub(z,x,y) stores the vector difference of x and y to z. We can scale a vector with scale, and the function dot is the ordinary Euclidean dot-product. The functions b and q both rely on the matrix Q; we have $q(x) = Qx \cdot x$ and $b(x,y) = Qx \cdot y$.

```
\langle \text{Linear algebra subroutines } 3 \rangle \equiv
  void set(double z[n], double x[n])
  {
     for (int i = 1; i \le n; ++i) {
        z[i] = x[i];
  }
  void add (double z[n], double x[n], double y[n])
     {\bf for}\ ({\bf int}\ i=1;\ i\le n;\ +\!\!+\!\!i)\ \{
        z[i] = x[i] + y[i];
  void sub(\mathbf{double}\ z[n], \mathbf{double}\ x[n], \mathbf{double}\ y[n])
     for (int i = 1; i \le n; ++i) {
        z[i] = x[i] - y[i];
     }
  void scale(double z[n], double lambda, double x[n])
     for (int i = 1; i \le n; ++i) {
        z[i] = lambda * x[i];
     }
  }
  void set_{-i}(int \ z[n], int \ x[n])
                                            /* integer versions of set, add, sub, and scale */
     for (int i = 1; i \le n; ++i) {
        z[i] = x[i];
     }
  void add_{-}i(\text{int }z[n],\text{int }x[n],\text{int }y[n])
     for (int i = 1; i \le n; ++i) {
        z[i] = x[i] + y[i];
  void sub_{-i}(int \ z[n], int \ x[n], int \ y[n])
     {\bf for} \ ({\bf int} \ i=1; \ i \le n; \ +\!\!+\!\!i) \ \{
        z[i] = x[i] - y[i];
  void scale_i(int \ z[n], int \ lambda, int \ x[n])
     for (int i = 1; i < n; ++i) {
```

 $\S 3$

```
z[i] = lambda * x[i];
double dot(double x[n], double y[n])
  double sum = 0;
  for (int i = 1; i \le n; ++i) {
    sum += x[i] * y[i];
  \textbf{return} \ sum;
double b(\text{double } x[n], \text{double } y[n])
  double sum = 0;
  for (int i = 1; i \le n; ++i) {
    sum += dot(Q[i], x) * y[i];
  return sum;
double q(double x[n])
  return b(x,x);
```

This code is used in section 2.

4

4. The LLL lattice reduction algorithm. This is the interesting part of the program. The variable bb denotes the basis (\mathbf{b}_i) . We will use the Gram-Schmidt orthogonalisation procedure to find an orthogonal basis (\mathbf{b}_i^*) , but we do this incrementally, as the algorithm progresses. We keep track of the dot products $\mathbf{b}_i^* \cdot \mathbf{b}_i^*$ in the array B.

The variable k is the main loop variable, but it doesn't always increase from iteration to iteration; sometimes it decreases and sometimes it maintains its value. We will therefore need to store k_max , the largest value that k has attained. For $1 \le k, j \le n$, $\mu_{k,j} = b(\mathbf{b}_k, \mathbf{b}_j^*)/q(\mathbf{b}_j^*)$. We will not want to compute this every time it is needed, so we store the μ values in a table called mu.

The basis (\mathbf{b}_i) is modified in place so that it is LLL-reduced once the algorithm terminates. The output is an integer matrix H that represents the new, reduced basis in terms of the original basis, i.e., if M is the matrix whose columns are the vectors \mathbf{b}_i , then $M \cdot H$ has the LLL-reduced basis as its columns. Note that H_i is the *i*th column of H.

```
\langle Lattice reduction algorithm lll | 4 \rangle \equiv
  int **lll(double bb[n+1][n+1])
     int k, k_{-}max, l;
     int **H = malloc((n+1) * sizeof(int *));
     double mu[n+1][n+1];
     double bb\_star[n+1][n+1];
     double B[n+1];
     double temp[n+1], tempb[n+1];
                                                   /* temporary arrays for calculations */
     int temp_{-}i[n+1];
     ⟨Initialisation 5⟩;
     int num\_loops = 0;
     do {
        if (k > k_{-}max) {
          ⟨ Add one Gram-Schmidt vector 6⟩;
       l = k - 1;
        \langle \text{ Reduce } bb[k] \text{ by subtracting multiples of } bb[l] \ 7 \rangle;
       if (\langle Lovász condition 8 \rangle) \{
          for (l = k - 2; l > 0; --l) {
             \langle \text{ Reduce } bb[k] \text{ by subtracting multiples of } bb[l] \ 7 \rangle;
          ++k;
        }
          \langle \text{Swap } bb[k] \text{ with } bb[k-1] 9 \rangle;
          k = (2 > k - 1) ? 2 : k - 1;
          continue;
     } while (k \le n);
     return H;
This code is used in section 2.
```

5. A for-loop initialises the mu and bb_star arrays to 0 and sets the H matrix to the identity. The Gram-Schmidt procedure is kickstarted by setting $\mathbf{b}_1^* \leftarrow \mathbf{b}_1$, and the main loop variable k is set to 2.

```
 \begin{split} &\langle \text{Initialisation 5} \rangle \equiv \\ & \text{for (int } i=1; \ i \leq n; \ +\!+\!i) \ \{ \\ & H[i] = malloc((n+1)*\text{sizeof(int)}); \\ & B[i] = 0; \\ & \text{for (int } j=1; \ j \leq n; \ +\!+\!j) \ \{ \\ & H[i][j] = (i \equiv j) \ ? \ 1:0; \\ & mu[i][j] = bb\_star[i][j] = 0.0; \\ \} \\ & \} \\ & k = 2; \\ & k\_max = 1; \\ & set(bb\_star[1], bb[1]); \\ & B[1] = q(bb\_star[1]); \end{split}  This code is used in section 4.
```

This code is used in section 4.

6. If k is bigger than it has ever been, we do exactly one step of the Gram-Schmidt orthogonalisation procedure. To add a new vector \mathbf{b}_k to the orthogonal basis, we trim away all components of \mathbf{b}_k that are not orthogonal to some \mathbf{b}_j^* for j < k. At the end of this process, the \mathbf{b}_k^* can safely be added to the orthogonal basis (\mathbf{b}_i^*) if it is nonzero; otherwise, there is some linear dependence in the original basis (\mathbf{b}_i) so we signal an error and return Λ .

```
 \langle \operatorname{Add\ one\ Gram-Schmidt\ vector\ 6} \rangle \equiv k_{-}max = k; \\ set(bb\_star[k],bb[k]); \\ \textbf{for\ (int\ } j = 1;\ j < k;\ ++j)\ \{ \\ mu[k][j] = b(bb[k],bb\_star[j])/B[j]; \\ scale(temp,mu[k][j],bb\_star[j]); \\ sub(bb\_star[k],bb\_star[k],temp); \\ \} \\ B[k] = b(bb\_star[k],bb\_star[k]); \\ \textbf{if\ } (B[k] < \mathtt{DBL\_EPSILON})\ \{ \\ printf("\mathtt{ERROR}: \_\mathtt{The}\_\mathtt{input}\_\mathtt{vectors}\_\mathtt{do}\_\mathtt{not}\_\mathtt{form}\_\mathtt{a}\_\mathtt{basis}.\n"); \\ \textbf{return\ } \Lambda; \\ \}
```

7. When we want to determine if a candidate vector \mathbf{b}_k is to be added into the lattice, we can subtract integer multiples of a vector \mathbf{b}_l already in the basis. The result is sort of a "remainder vector" (taking a vector "modulo" another should remind you of Euclidean division), that becomes the new working vector. We will also have to update the H matrix and the mu table.

```
 \langle \text{Reduce } bb[k] \text{ by subtracting multiples of } bb[l] \ 7 \rangle \equiv \\ \text{if } (fabs(mu[k][l]) > 0.5) \ \{ \\ \text{int } rounded = (\text{int}) \ floor((0.5 + mu[k][l])); \\ scale(temp, rounded, bb[l]); \\ sub(bb[k], bb[k], temp); \ /* \text{ subtract some integer multiple of } \mathbf{b}_l \ */scale\_i(temp\_i, rounded, H[l]); \\ sub\_i(H[k], H[k], temp\_i); \\ mu[k][l] = mu[k][l] - rounded; \\ \text{for } (\text{int } i = 1; \ i < l; \ ++i) \ \{ \\ mu[k][i] = mu[k][i] - rounded * mu[l][i]; \\ \} \\ \}
```

This code is used in section 4.

6

8. At this stage of the algorithm, we are trying to determine if a candidate vector \mathbf{b}_k should be added to the LLL-reduced basis. This is done by checking the so-called Lovász condition, namely,

$$B_k \ge (3/4 - \mu_{k,k-1}^2)B_{k-1}.$$

If it is satisfied, we can add \mathbf{b}_k to the LLL-basis; but if not (this happens when \mathbf{b}_{k-1} is "too long", in some sense), we must swap \mathbf{b}_k and \mathbf{b}_{k-1} and update the auxiliary tables accordingly. After this step, \mathbf{b}_{k-1} is discarded because \mathbf{b}_k is still the candidate vector, but now the LLL-reduced basis is only $(\mathbf{b}_1, \ldots, \mathbf{b}_{k-2})$.

```
 \begin{split} & \langle \text{Lov\'asz condition } 8 \rangle \equiv \\ & B[k] \geq (0.75 - mu[k][k-1] * mu[k][k-1]) * B[k-1] \end{split}  This code is used in section 4.
```

9. Here we perform the gnarly task of swapping \mathbf{b}_k and \mathbf{b}_{k-1} . This means all of the auxiliary arrays and tables must be updated.

```
\langle \text{Swap } bb[k] \text{ with } bb[k-1] 9 \rangle \equiv
                        /* swap \mathbf{b}_k with \mathbf{b}_{k-1} */
  set(temp, bb[k]);
  set(bb[k], bb[k-1]);
  set(bb[k-1], temp);
  set_{-}i(temp_{-}i, H[k]);
                            /* swap H_k with H_{k-1} */
  set_{-}i(H[k], H[k-1]);
  set_{-i}(H[k-1], temp_{-i});
  double t, m;
                     /* temporary scalars */
  if (k > 2) {
    for (int j = 1; j \le k - 2; ++j) {
       t = mu[k][j];
                       /* swap \mu_{k,j} with \mu_{k-1,j} */
       mu[k][j] = mu[k-1][j];
       mu[k-1][j] = t;
  }
  m = mu[k][k-1];
  t = B[k] + m * m * B[k-1];
  mu[k][k-1] = m * B[k-1]/t;
  set(tempb, bb\_star[k-1]);
  scale(temp, m, tempb);
  add(bb\_star[k-1], bb\_star[k], temp);
  scale(tempb, B[k]/t, tempb);
  scale(temp, -1.0 * mu[k][k-1], bb\_star[k]);
  add(bb\_star[k], temp, tempb);
  B[k] = B[k-1] * B[k]/t;
  B[k-1] = t;
  for (int i = k + 1; i \le k - max; ++i) {
    t = mu[i][k];
    mu[i][k] = mu[i][k-1] - m * t;
    mu[i][k-1] = t + mu[k][k-1] * mu[i][k];
        /* phew! */
```

This code is used in section 4.

10. Input-output functionality. These components of the *main* function format the input and print the output to the console.

```
\langle Format input into global variables 11 \rangle \equiv
   \mathbf{double} \ input\_lattice[\mathtt{DIM}][\mathtt{DIM}] = \mathtt{INPUT\_BASIS};
   double input\_quad[DIM][DIM] = INPUT\_QUAD;
   for (int i = 0; i < n; ++i) {
     for (int j = 0; j < n; ++j) {
        bb[i+1][j+1] = input\_lattice[i][j];
        Q[i+1][j+1] = input\_quad[i][j];
     }
   printf("Input_lattice_basis:\n");
   \langle \text{ Print } bb \text{ 13} \rangle;
  printf("Input Q matrix: \n");
  for (int j = 1; j \le n; ++j) {
     for (int i = 1; i \le n; ++i) {
        printf("\%f_{\sqcup}", (Q[i][j]));
     printf("\n");
This code is used in section 2.
12. \langle \text{ Output basis } bb | 12 \rangle \equiv
  printf("Reduced_{\sqcup}basis: \n");
   \langle \text{ Print } bb \text{ 13} \rangle;
This code is used in section 2.
13. \langle \text{ Print } bb | 13 \rangle \equiv
  for (int i = 1; i \le n; ++i) {
     printf("(");
     for (int j = 1; j \le n; ++j) {
        printf(\verb"%f",(bb[i][j]));
        if (j \neq n) printf(", ");
     printf(")\n");
This code is used in sections 11 and 12.
14. Note that we interchanged i and j in the loops, because H[i] is the ith column of H.
\langle \text{Output matrix } H | 14 \rangle \equiv
  printf("H<sub>□</sub>matrix:\n");
  for (int j = 1; j \le n; ++j) {
     for (int i = 1; i \le n; ++i) {
        printf("%d_{\sqcup}", (H[i][j]));
     printf("\n");
This code is used in section 2.
```

 $\S15$ LLL INDEX 9

15. Index.

 $add: \underline{3}, 9.$ $add_{-}i$: 3. $B: \underline{4}.$ b: $\underline{3}$. $bb: \ \underline{2}, \ \underline{4}, \ 5, \ 6, \ 7, \ 9, \ 11, \ 13.$ bb_star : $\underline{4}$, 5, 6, 9. DBL_EPSILON: 6. DIM: 1, 2, 11. dot: $\underline{3}$. fabs: 7.floor: 7. $H: \underline{2}, \underline{4}.$ $i: \quad \underline{3}, \ \underline{5}, \ \underline{7}, \ \underline{9}, \ \underline{11}, \ \underline{13}, \ \underline{14}.$ INPUT_BASIS: $1, \underline{2}, 11.$ $\begin{array}{ll} input_lattice\colon & \underline{11}.\\ {\tt INPUT_QUAD}\colon & 1,\ \underline{2},\ 11. \end{array}$ $input_quad: \underline{11}.$ $j: \quad \underline{5}, \ \underline{6}, \ \underline{9}, \ \underline{11}, \ \underline{13}, \ \underline{14}.$ $k: \underline{4}.$ $k_{-}max: \underline{4}, 5, 6, 9.$ $l: \underline{4}.$ $lambda: \underline{3}.$ $lll: 2, \underline{4}.$ $m: \underline{9}.$ main: $\underline{2}$, 10. malloc: 4, 5. $mu: \ \underline{4}, \ 5, \ 6, \ 7, \ 8, \ 9.$ n: $\underline{2}$. $num_loops: \underline{4}.$ printf: 6, 11, 12, 13, 14. Q: $\underline{2}$. q: $\underline{3}$. $rounded: \underline{7}.$ scale: $\underline{3}$, 6, 7, 9. $scale_{-}i$: 3, 7. set: 3, 5, 6, 9. set_i : 3, 9. $sub\colon \ \underline{3},\ 6,\ 7.$ $sub_{-}i$: $\underline{3}$, 7. $sum: \underline{3}.$ t: $\underline{9}$. $temp\colon \ \underline{4},\ 6,\ 7,\ 9.$ $temp_i: \underline{4}, 7, 9.$ $tempb: \underline{4}, 9.$ $x: \underline{3}.$ y: $\underline{3}$.

z: $\underline{3}$.

10 NAMES OF THE SECTIONS LLL

```
 \left\langle \text{Add one Gram-Schmidt vector 6} \right\rangle \quad \text{Used in section 4.} \\ \left\langle \text{Format input into global variables 11} \right\rangle \quad \text{Used in section 2.} \\ \left\langle \text{Initialisation 5} \right\rangle \quad \text{Used in section 4.} \\ \left\langle \text{Lattice reduction algorithm $lll$ $4$} \right\rangle \quad \text{Used in section 2.} \\ \left\langle \text{Linear algebra subroutines 3} \right\rangle \quad \text{Used in section 2.} \\ \left\langle \text{Lovász condition 8} \right\rangle \quad \text{Used in section 4.} \\ \left\langle \text{Output basis $bb$ 12$} \right\rangle \quad \text{Used in section 2.} \\ \left\langle \text{Output matrix $H$ 14$} \right\rangle \quad \text{Used in section 2.} \\ \left\langle \text{Print $bb$ 13$} \right\rangle \quad \text{Used in sections 11 and 12.} \\ \left\langle \text{Reduce $bb[k]$ by subtracting multiples of $bb[l]$ $7$} \right\rangle \quad \text{Used in section 4.} \\ \left\langle \text{Swap $bb[k]$ with $bb[k-1]$ $9$} \right\rangle \quad \text{Used in section 4.}
```

LLL

	Sect	ion	Page
Introduction		. 1	1
Linear algebra subroutines		. 3	2
The LLL lattice reduction algorithm		. 4	4
Input-output functionality		10	8
Index		15	Q