Written by Marcel K. Goh. Last updated July 28, 2020 at 11:02

1. Introduction. This literate program performs lattice reduction using the celebrated LLL algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász [Math. Annalen 261 (1982), 515-534]. It is a C implementation of the algorithm as described and analysed by H. Cohen in Section 2.6 .1 of his book A Course in Computational Algebraic Number Theory (New York: Springer, 1996).

Vectors will be represented as C arrays, but since arrays are 0-indexed in C, we will always allocate one extra entry of memory and then keep the zeroth cell empty. This is for consistency with the usual numbering $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ of vectors in a basis.

The input to the program is a set of n vectors $\left(\mathbf{b}_{i}\right)$ that form a Z-basis for the lattice L that we wish to reduce. We also need to specify the quadratic form q, which is done with a matrix Q. If x is a vector, then the function $b(x, y)=Q x \cdot y$ is bilinear (where \cdot is the ordinary Euclidean dot-product), and we have the associated quadratic form $q(x)=b(x, x)=Q x \cdot x$.

This program does not take input from the console. To change its arguments, modify the three macros DIM, INPUT_BASIS, and INPUT_QUAD. The LLL-reduced basis will be printed as well as a change-of-basis matrix H.
2. This is the main outline of the program.

```
#define DIM 3
#define INPUT_BASIS {{15.0,23.0,11.0},{46.0,15.0,3.0},{32.0,1.0,1.0}}
#define INPUT_QUAD {{1.0,0.0,0.0},{0.0,1.0,0.0},{0.0,0.0,1.0}}
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
    int n; /* global variables, for convenience */
    double }bb[\textrm{DIM}+1][\textrm{DIM}+1],Q[\textrm{DIM}+1][\textrm{DIM}+1]
    <Linear algebra subroutines 3>;
    <Lattice reduction algorithm lll 4\rangle;
    int main()
    {
        n= DIM;
        < Format input into global variables 11\rangle;
        int **H;
        H=lll(bb); /* set H to the output of the LLL algorithm, modify bb in place */
        if (H\not=\Lambda) {
                <Output basis bb 12\rangle;
                <Output matrix H 14>;
            return 0;
        }
        else {
            return 1;
        }
    }
```

3. Linear algebra subroutines. We begin with some linear algebra subroutines that will help us treat arrays as vectors. Calling $\operatorname{set}(z, x)$ sets the entries of z to the entries of x, while $\operatorname{sub}(z, x, y)$ stores the vector difference of x and y to z. We can scale a vector with scale, and the function dot is the ordinary Euclidean dot-product. The functions b and q both rely on the matrix Q; we have $q(x)=Q x \cdot x$ and $b(x, y)=Q x \cdot y$.
\langle Linear algebra subroutines 3$\rangle \equiv$
```
void set(double z[n], double }x[n]
{
    for (int i=1; i\leqn;++i) {
        z[i]=x[i];
        }
}
void add(double z[n], double }x[n]\mathrm{ , double }y[n]
{
    for (int i=1; i\leqn;++i) {
        z [ i ] = x [ i ] + y [ i ] ;
        }
}
void sub(double z[n], double }x[n]\mathrm{ , double }y[n]
{
        for (int i=1; i\leqn; ++i) {
        z[i]=x[i]-y[i];
    }
}
```

void scale(double $z[n]$, double lambda, double $x[n]$)
\{
for (int $i=1 ; i \leq n ;++i)\{$
$z[i]=\operatorname{lambda} * x[i] ;$
\}
\}
void set_i(int $z[n]$, int $x[n]) \quad / *$ integer versions of set, add, sub, and scale */
\{
for $($ int $i=1 ; i \leq n ;+i)$ \{
$z[i]=x[i] ;$
\}
\}
void $a d d _i($ int $z[n]$, int $x[n]$, int $y[n])$
\{
for (int $i=1 ; i \leq n ;++i)$ \{
$z[i]=x[i]+y[i] ;$
\}
\}
void $s u b_{-} i($ int $z[n]$, int $x[n]$, int $y[n])$
\{
for (int $i=1 ; i \leq n ;++i)\{$
$z[i]=x[i]-y[i] ;$
\}
\}
void $\operatorname{scale} e_{-}($int $z[n]$, int $l a m b d a$, int $x[n])$
\{
for $($ int $i=1 ; i \leq n ;++i)\{$

```
        z[i]=lambda*x[i];
    }
    }
    double }\operatorname{dot}(\mathrm{ double }x[n]\mathrm{ , double }y[n]
    {
        double sum = 0;
        for (int i=1; i\leqn; ++i) {
        sum +=x[i]*\overline{y}[i];
    }
    return sum;
}
    double }b\mathrm{ (double }x[n]\mathrm{ , double }y[n]
    {
        double sum = 0;
        for (int i=1; i\leqn; ++i) {
        sum += dot (Q[i],x)*y[i];
        }
    return sum;
    }
    double q(double }x[n]
    {
    return }b(x,x)
}
This code is used in section 2.
```

4. The LLL lattice reduction algorithm. This is the interesting part of the program. The variable $b b$ denotes the basis $\left(\mathbf{b}_{i}\right)$. We will use the Gram-Schmidt orthogonalisation procedure to find an orthogonal basis (\mathbf{b}_{i}^{*}), but we do this incrementally, as the algorithm progresses. We keep track of the dot products $\mathbf{b}_{i}^{*} \cdot \mathbf{b}_{i}^{*}$ in the array B.

The variable k is the main loop variable, but it doesn't always increase from iteration to iteration; sometimes it decreases and sometimes it maintains its value. We will therefore need to store k _max, the largest value that k has attained. For $1 \leq k, j \leq n, \mu_{k, j}=b\left(\mathbf{b}_{k}, \mathbf{b}_{j}^{*}\right) / q\left(\mathbf{b}_{j}^{*}\right)$. We will not want to compute this every time it is needed, so we store the μ values in a table called $m u$.

The basis $\left(\mathbf{b}_{i}\right)$ is modified in place so that it is LLL-reduced once the algorithm terminates. The output is an integer matrix H that represents the new, reduced basis in terms of the original basis, i.e., if M is the matrix whose columns are the vectors \mathbf{b}_{i}, then $M \cdot H$ has the LLL-reduced basis as its columns. Note that H_{i} is the i th column of H.

```
\(\langle\) Lattice reduction algorithm \(l l l 4\rangle \equiv\)
    int \(* * l l l(\) double \(b b[n+1][n+1])\)
    \{
        int \(k, k_{-} \max , l\);
        int \(* * H=\operatorname{malloc}((n+1) * \operatorname{sizeof}(\) int \(*))\);
        double \(m u[n+1][n+1]\);
        double bb_star \([n+1][n+1]\);
        double \(B[n+1]\);
        double temp \([n+1]\), tempb \([n+1] ; \quad / *\) temporary arrays for calculations \(* /\)
        int temp_i \(i n+1]\);
        \(\langle\) Initialisation 5〉;
        int num_loops \(=0\);
        do \{
            if \(\left(k>k_{-} \max \right)\) \{
                \(\langle\) Add one Gram-Schmidt vector 6\(\rangle\);
            \}
            \(l=k-1 ;\)
            \(\langle\) Reduce \(b b[k]\) by subtracting multiples of \(b b[l] 7\rangle\);
            if ( \(\langle\) Lovász condition 8\(\rangle\) ) \{
                for \((l=k-2 ; l>0 ;--l)\) \{
                    \(\langle\) Reduce \(b b[k]\) by subtracting multiples of \(b b[l] 7\rangle\);
                \}
                    \(++k\);
            \}
            else \{
                    \(\langle\) Swap \(b b[k]\) with \(b b[k-1] 9\rangle\);
                    \(k=(2>k-1) ? 2: k-1\);
                    continue;
            \}
        \} while \((k \leq n)\);
        return \(H\);
    \}
```

This code is used in section 2.
5. A for-loop initialises the $m u$ and $b b_{-} s t a r$ arrays to 0 and sets the H matrix to the identity. The Gram-Schmidt procedure is kickstarted by setting $\mathbf{b}_{1}^{*} \leftarrow \mathbf{b}_{1}$, and the main loop variable k is set to 2 .

```
\(\langle\) Initialisation 5\(\rangle \equiv\)
    for (int \(i=1 ; i \leq n ;++i)\{\)
        \(H[i]=\operatorname{malloc}((n+1) * \operatorname{sizeof}(\) int \())\);
        \(B[i]=0\);
        for (int \(j=1 ; j \leq n ;++j\) ) \{
            \(H[i][j]=(i \equiv j) ? 1: 0 ;\)
            \(m u[i][j]=b b_{\_}\)star \([i][j]=0.0 ;\)
        \}
    \}
    \(k=2 ;\)
    \(k \_\max =1\);
    set (bb_star [1], bb [1]);
    \(B[1]=q(\) bb_star \([1])\);
```

This code is used in section 4.
6. If k is bigger than it has ever been, we do exactly one step of the Gram-Schmidt orthogonalisation procedure. To add a new vector \mathbf{b}_{k} to the orthogonal basis, we trim away all components of \mathbf{b}_{k} that are not orthogonal to some \mathbf{b}_{j}^{*} for $j<k$. At the end of this process, the \mathbf{b}_{k}^{*} can safely be added to the orthogonal basis $\left(\mathbf{b}_{i}^{*}\right)$ if it is nonzero; otherwise, there is some linear dependence in the original basis (\mathbf{b}_{i}) so we signal an error and return Λ.

```
\(\langle\) Add one Gram-Schmidt vector 6\(\rangle \equiv\)
    \(k \_\max =k\);
    set (bb_star \([k], b b[k])\);
    for (int \(j=1 ; j<k ;+j\) ) \{
        \(m u[k][j]=b\left(b b[k], b b \_\right.\)star \(\left.[j]\right) / B[j] ;\)
        scale (temp, mu \([k][j]\), bb_star \([j])\);
        sub(bb_star \(\left.[k], b b \_s t a r[k], t e m p\right) ;\)
    \}
    \(B[k]=b\left(b b_{-} s t a r[k], b b \_\right.\)star \(\left.[k]\right)\);
    if ( \(B[k]<\) DBL_EPSILON) \{
```



```
        return \(\Lambda\);
    \}
```

This code is used in section 4.
7. When we want to determine if a candidate vector \mathbf{b}_{k} is to be added into the lattice, we can subtract integer multiples of a vector \mathbf{b}_{l} already in the basis. The result is sort of a "remainder vector" (taking a vector "modulo" another should remind you of Euclidean division), that becomes the new working vector. We will also have to update the H matrix and the $m u$ table.

```
\(\langle\) Reduce \(b b[k]\) by subtracting multiples of \(b b[l] 7\rangle \equiv\)
    if (fabs \((m u[k][l])>0.5)\) \{
        int rounded \(=(\) int \()\) floor \(((0.5+m u[k][l]))\);
        scale (temp, rounded, bb[l]);
        \(\operatorname{sub}(b b[k], b b[k]\), temp \() ; \quad / *\) subtract some integer multiple of \(\mathbf{b}_{l} * /\)
        scale_i \((\) temp_ \(i\), rounded, \(H[l])\);
        sub_i \((H[k], H[k]\), temp_i \()\);
        \(m u[k][l]=m u[k][l]-\) rounded \(;\)
        for (int \(i=1 ; i<l ;+i)\{\)
            \(m u[k][i]=m u[k][i]-\) rounded \(* m u[l][i] ;\)
        \}
    \}
```

This code is used in section 4.
8. At this stage of the algorithm, we are trying to determine if a candidate vector \mathbf{b}_{k} should be added to the LLL-reduced basis. This is done by checking the so-called Lovász condition, namely,

$$
B_{k} \geq\left(3 / 4-\mu_{k, k-1}^{2}\right) B_{k-1}
$$

If it is satisfied, we can add \mathbf{b}_{k} to the LLL-basis; but if not (this happens when \mathbf{b}_{k-1} is "too long", in some sense), we must swap \mathbf{b}_{k} and \mathbf{b}_{k-1} and update the auxiliary tables accordingly. After this step, \mathbf{b}_{k-1} is discarded because \mathbf{b}_{k} is still the candidate vector, but now the LLL-reduced basis is only $\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{k-2}\right)$.
\langle Lovász condition 8$\rangle \equiv$

$$
B[k] \geq(0.75-m u[k][k-1] * m u[k][k-1]) * B[k-1]
$$

This code is used in section 4.
9. Here we perform the gnarly task of swapping \mathbf{b}_{k} and \mathbf{b}_{k-1}. This means all of the auxiliary arrays and tables must be updated.
\langle Swap $b b[k]$ with $b b[k-1] 9\rangle \equiv$

$$
\operatorname{set}(\operatorname{temp}, b b[k]) ; \quad / * \operatorname{swap} \mathbf{b}_{k} \text { with } \mathbf{b}_{k-1} * /
$$

$$
\operatorname{set}(b b[k], b b[k-1])
$$

$$
\operatorname{set}(b b[k-1], \operatorname{temp})
$$

$$
\text { set_ } i(\text { temp_ } i, H[k]) ; \quad / * \operatorname{swap} H_{k} \text { with } H_{k-1} * /
$$

$$
\operatorname{set}_{-} i(H[k], H[k-1])
$$

$$
\text { set_i } i(H[k-1], \text { temp_i) }
$$

double $t, m ; \quad / *$ temporary scalars $* /$
if $(k>2)\{$
for (int $j=1 ; j \leq k-2 ;++j$) \{
$t=m u[k][j] ; \quad / * \operatorname{swap} \mu_{k, j}$ with $\mu_{k-1, j} * /$
$m u[k][j]=m u[k-1][j] ;$
$m u[k-1][j]=t ;$
\}
\}
$m=m u[k][k-1]$;
$t=B[k]+m * m * B[k-1] ;$
$m u[k][k-1]=m * B[k-1] / t ;$
set (tempb, bb_star $[k-1])$;
scale (temp, m, tempb);
add (bb_star $[k-1], b b _s t a r[k]$, temp $)$;
scale (tempb, $B[k] / t$, tempb);
scale (temp $\left.,-1.0 * m u[k][k-1], b b _s t a r[k]\right)$;
add (bb_star $[k]$, temp , tempb);
$B[k]=B[k-1] * B[k] / t ;$
$B[k-1]=t ;$
for $\left(\right.$ int $\left.i=k+1 ; i \leq k _\max ;++i\right)\{$
$t=m u[i][k]$;
$m u[i][k]=m u[i][k-1]-m * t ;$ $m u[i][k-1]=t+m u[k][k-1] * m u[i][k] ;$
\} $\quad / *$ phew! $* /$
This code is used in section 4.
10. Input-output functionality. These components of the main function format the input and print the output to the console.

```
11. \langleFormat input into global variables 11\rangle\equiv
    double input_lattice[DIM][DIM] = INPUT_BASIS;
    double input_quad[DIM][DIM] = INPUT_QUAD;
    for (int i=0;i<n;++i) {
        for (int j=0; j<n;++j) {
            bb[i+1][j+1] = input_lattice [i][j];
            Q[i+1][j+1] = input_quad [i][j];
        }
    }
    printf("Input\sqcuplattice\sqcupbasis:\n");
    <Print bb 13>;
    printf("Input\sqcupQ\sqcupmatrix:\n");
    for (int j=1; j\leqn; ++j) {
        for (int i=1; i\leqn;++i) {
            printf("%f
        }
        printf("\n");
    }
This code is used in section 2.
```

12. \langle Output basis $b b 12\rangle \equiv$
printf("Reducedபbasis: $\backslash \mathrm{n} ")$;
\langle Print bb 13\rangle;
This code is used in section 2.
13. \langle Print $b b 13\rangle \equiv$
for (int $i=1 ; i \leq n ;++i)\{$
printf(" (");
for (int $j=1 ; j \leq n ;+j$) \{
printf("\%f", (bb[i][j]));
if $(j \neq n) \operatorname{printf}(", \sqcup ")$;
\}
printf(") \n");
\}
This code is used in sections 11 and 12.
14. Note that we interchanged i and j in the loops, because $H[i]$ is the i th column of H.
\langle Output matrix $H 14\rangle \equiv$
printf("H」matrix: $\backslash \mathrm{n} ")$;
for (int $j=1 ; j \leq n ;+j$) \{ for (int $i=1 ; i \leq n ;+i)\{$

$$
\operatorname{printf}\left(" \% \mathrm{~d}_{\sqcup} ",(H[i][j])\right) ;
$$

 \}
 printf("\n");
 \}
 This code is used in section 2.
15. Index.
add: $\quad \underline{3}, 9$.
add_i: $\quad \underline{3}$.
B : 4 .
$b: \quad 3$.
$b b: \underline{2}, \underline{4}, 5,6,7,9,11,13$.
bb_star: 4, 5, 6, 9 .
DBL_EPSILON: 6.
DIM: 1, $\underline{2}, 11$.
dot: $\underline{3}$.
fabs: 7.
floor: 7.
$H: 2, \underline{4}$.
i : $\underline{3}, \underline{5}, \underline{7}, \underline{9}, \underline{11}, \underline{13}, \underline{14}$.
INPUT_BASIS: 1, $\underline{2}, 11$.
input_lattice: 11.
INPUT_QUAD: $1, \underline{2}, 11$.
input_quad: 11.
$j: \underline{5}, \underline{6}, \underline{9}, \underline{11}, \underline{13}, \underline{14}$.
k : 4 .
k_max: $\quad \underline{4}, 5,6,9$.
$l: \underline{4}$.
lambda: $\underline{3}$.
lll: 2, $\underline{4}$.
m : $\underline{9}$.
main: 2, 10.
malloc: 4, 5 .
mu: 4, 5, 6, 7, 8, 9.
n : 2 .
num_loops: $\underline{4}$.
printf: $6,11,12,13,14$.
$Q: \underline{2}$.
q : $\quad 3$.
rounded: 7 .
scale: 3, 6, 7, 9.
scale_i: $\underline{3}, 7$.
set: $\underline{3}, 5,6,9$.
set_ $i: \quad 3,9$.
sub: 3, 6, 7 .
sub_i: $\underline{3}, 7$.
sum: $\underline{3}$.
$t: \quad 9$.
temp: 4, 6, 7, 9.
temp_i: 4, 7, 9.
tempb: 4, 9.
$x: \underline{3}$.
y : $\underline{3}$.
$z: \quad 3$.
\langle Add one Gram－Schmidt vector 6〉 Used in section 4.
\langle Format input into global variables 11〉 Used in section 2.
\langle Initialisation 5〉 Used in section 4.
\langle Lattice reduction algorithm lll 4〉 Used in section 2.
〈Linear algebra subroutines 3〉 Used in section 2.
〈Lovász condition 8〉 Used in section 4.
\langle Output basis $b b 12\rangle$ Used in section 2.
\langle Output matrix $H 14\rangle \quad$ Used in section 2.
\langle Print $b b 13\rangle \quad$ Used in sections 11 and 12.
\langle Reduce $b b[k]$ by subtracting multiples of $b b[l] 7\rangle$ Used in section 4.
\langle Swap $b b[k]$ with $b b[k-1] 9\rangle$ Used in section 4.

LLL

	Section	Page
Introduction	1	1
Linear algebra subroutines	3	2
The LLL lattice reduction algorithm	4	4
Input-output functionality	. 10	8
Index	. . 15	9

